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We investigate a class of multilayered metamaterials characterized by moderate-permittivity inclusions and
low average permittivity. Via first-principles calculations, we show that in such a scenario, first- and second-order
spatial dispersions may exhibit a dramatic and nonresonant enhancement, and may become comparable with
the local response. Their interplay gives access to a wealth of dispersion regimes encompassing additional
extraordinary waves and topological phase transitions. In particular, we identify a configuration featuring bound
and disconnected isofrequency contours. Since they do not rely on high-permittivity inclusions, our proposed
metamaterials may constitute an attractive and technologically viable platform for engineering nonlocal effects
in the optical range.
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Introduction. Metamaterials are artificial composites of
dielectric and/or metallic inclusions in a host medium, which
can be engineered so as to exhibit unconventional and/or
tailored effective electromagnetic responses. As such, they
constitute a unique platform for attaining novel optical mech-
anisms such as negative refraction, super- and hyperlensing,
invisibility cloaking, etc. [1]. In the long-wavelength limit, the
metamaterial optical response is typically described in terms of
macroscopic phenomenological parameters, such as effective
permittivity and permeability [2]. However, if the inclusions
are metallic and/or their size is not electrically small, nonlocal
effects (i.e., spatial dispersion) may need to be accounted for,
e.g., via the appearance of spatial derivatives of the fields
in the effective constitutive relationships, or via wave-vector-
dependent constitutive parameters [3]. The reader is referred
to Refs. [4–8] for a representative sampling of nonlocal
homogenization approaches available in the topical literature.
It is worth stressing that two cornerstones in metamaterial
science, namely, artificial electromagnetic chirality and optical
magnetism, are manifestations of first- and second-order spa-
tial dispersion, respectively [9,10]. Artificial electromagnetic
chirality [due to three- (3D), two- (2D), and one-dimensional
(1D) geometrical chirality [11]] yields interesting phenomena,
such as giant optical activity, asymmetric transmission, and a
negative refractive index [12]. Artificial or optical magnetism
may give rise to a negative refractive index and backward-wave
propagation [13].

It is worth noting that second-order spatial dispersion is
not fully equivalent to artificial magnetism [14], and this
aspect has not been exploited to its fullest extent in applied
science. Even though second-order and nonmagnetic nonlocal
effects are generally considered to be detrimental for several
applications [15], they have been shown to support intriguing
phenomena such as the propagation of additional extraordinary
waves [16,17] and topological transitions [14,18,19]. Within
this context, harnessing these nonlocal effects represents one
of the grand challenges of metamaterials science.

Spatial dispersion is essentially ruled by the electrical size
η = �/λ, with � denoting a characteristic metamaterial scale
(unit-cell size) and λ the vacuum wavelength. Therefore, un-

like conventional materials, metamaterials offer a natural way
for enhancing nonlocality by tailoring the spatial distribution
of the inclusions. There are several strategies to modify the
hierarchy of the spatial-dispersion orders: (i) by optimizing the
shape and size of inclusions [20], (ii) by exploiting plasmonic
resonances [21], (iii) by resorting to extreme regimes where
the permittivity and/or permeability are close to zero [11],
and (iv) by embedding high-index dielectric inclusions (i.e.,
with relative permittivity |εI | ∼ 1/η2) [22,23]. The latter
strategy has led to the development of low-loss, all-dielectric
metamaterials with electric and magnetic responses [24].

Here, we propose a strategy to enhance both first- and
second-order spatial dispersion, so that the effect of their
interplay may become comparable with the local response,
without resorting to plasmonic resonances. Such an interplay
is remarkably unusual in nonresonant scenarios, since first-
and second-order spatial-dispersion effects typically differ by
orders of magnitude. Moreover, their symmetry properties
are also different, since first-order nonlocality is ruled by
geometric chirality, whereas second-order nonlocality is not.

We show that the above strategy can be implemented
in multilayered metamaterials characterized by moderate-
permittivity inclusions (MPIs), i.e., with relative permittivity
|εI | ∼ 1/η, in conjunction with a relatively low average
relative permittivity � 1/η. Via first-principles derivations,
we show that transverse magnetic (TM) waves are ruled
by a biquadratic, highly tunable dispersion relationship that
yields a broad variety of phenomena, encompassing additional
extraordinary waves and topological phase transitions. Besides
the well-known hyperbolic, elliptic, and mixed regimes, we
identify a topologically nontrivial dispersion regime char-
acterized by bounded and multiply connected isofrequency
contours accompanied by additional extraordinary waves.
The proposed metamaterials, which combine a fairly simple
geometrical structure with relaxed (moderate-permittivity)
requirements on the material constituents, may provide a
versatile and technologically viable platform for dispersion
engineering, especially attractive in spectral regions (e.g.,
optical range) where extremely high-index materials are not
available.
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FIG. 1. (a) Schematic of the metamaterial unit cell. (b)–(f)
Representative isofrequency contours attainable from Eq. (4).

MPI metamaterials response. With reference to the
schematic in Fig. 1(a), we consider a 1D multilayered metama-
terial, periodically stratified along the x axis, with a unit cell
of thickness � consisting of two (possibly composite) regions
that we generically indicate as “background” and “inclusion”.
All fields and quantities are assumed as independent of y,
and the metamaterial is described by a piecewise continuous
relative permittivity distribution ε(x), denoted by εB and εI

within the background and the inclusion regions, respectively.
In the presence of a monochromatic electromagnetic field
(with suppressed e−iωt time dependence) whose vacuum
wavelength λ is much larger than the unit-cell period, the small
ratio η = �/λ rules the homogenization of the metamaterial
response. As anticipated, we are interested in the MPI regime
characterized by the basic requirements

|εB | � 1/η, |εI | ∼ 1/η, (1a)

|ε(x)| � 1/η, (1b)

with the overline indicating the average over a unit cell.
As detailed in Ref. [25], a rigorous, multiscale analysis
of TM-wave (y-directed magnetic field) propagation, in the
long-wavelength limit η � 1 and the MPI regime, shows that
the leading-order metamaterial response is governed by the
effective constitutive relationships

Dx = ε0

(
ε||Ex + κ

k0

∂Ez

∂z

)
, (2a)

Dz = ε0

(
ε⊥Ez − κ

k0

∂Ex

∂z
+ δ

k2
0

∂2Ez

∂z2

)
, (2b)

By = μ0Hy, (2c)

with ε0, μ0, and k0 = ω
√

ε0μ0 = 2π/λ denoting the vacuum
permittivity, permeability, and wave number, respectively, and

ε|| =
[
ε−1(x)

]−1
, ε⊥ = ε(x) +

∑
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n2
, (3a)
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where the summations are intended over all integers n,m �= 0,
with n �= −m, and An/η and Bn are the Fourier coefficients of
the functions ε(x) and ε−1(x), respectively (with |An|, |Bn| �
1/η). Equations (2) and (3) summarize the main result of this
study, and they show that the MPI regime, in addition to the
local response, can exhibit both first- and second-order spatial
dispersion. By using the Serdyukov-Fedorov transformation
method [9], it can be shown that the obtained first-order spatial
dispersion is equivalent to 1D electromagnetic chirality [11],
and that the second-order spatial dispersion is nonmagnetic
(i.e., there is no transformation yielding a nonvanishing mag-
netic permeability). It is crucial to stress that Eqs. (2) do not
contain the small parameter η. From the physical viewpoint,
this yields an unprecedented regime where local response
and nonlocal effects may interplay at comparable levels. By
contrast, in media with shallow dielectric modulation, first-
and second-order spatial-dispersion contributions scale as ∼η

and ∼η2, respectively, and hence they are too weak to appear
in the leading-order term of the effective response [23].

Our proposed MPI regime in Eqs. (1) forbids the onset
of resonances that would produce a dominant local response,
and, at the same time, it triggers an anomalous enhancement
of nonlocal effects which strengthens (in different ways) the
relative weight of standard first- and second-order spatial-
dispersion contributions, while leaving higher-order spatial-
dispersion contributions at a negligibly weak level. To gain
some physical insight into the underlying mechanisms, we
start by analyzing the local response. Due to the requirements
in Eqs. (1a), the average of ε−1(x) is dominated by the
background contribution εB , so that |ε||| � 1/η [see Eq. (3a)].
This is a key aspect characterizing the MPI regime since, in
the presence of a uniformly large dielectric spatial modulation,
|ε||| can be exceedingly large so as to yield superlensing
effects [28] which are unaffected by spatial dispersion. The
requirements in Eqs. (1a), attainable by suitably tailoring the
inclusion dielectric profile (see our discussion and examples
below), imply that the first contribution ε(x) to ε⊥ in Eq. (3a)
is not large. Moreover, the Fourier coefficients of ε(x) (with
n �= 0) are An/η, with |An| � 1/η, and hence |ε⊥| � 1/η.
In other words, even if the dielectric modulation is large, the
MPI regime is characterized by local effective permittivities
that are sufficiently small so as not to overshadow the spatial-
dispersion effects. Considering now the nonlocal response, the
requirements in Eqs. (1a) imply that all Fourier coefficients
of ε−1(x) are dominated by the background permittivity, and
hence |Bn| � 1/η. As a consequence, from Eqs. (3b) and (3c),
the strength of the nonlocal response may become comparable
with the local one (see also Ref. [25] for a heuristic explanation
of the enhancement effects). It is also worth emphasizing
that, although the MPI requirements in Eqs. (1) do not
explicitly provide indications on the permittivity signs, the
most significant spatial-dispersion enhancements [i.e., sizable
values of κ and δ in Eqs. (3)] are obtained in configurations
mixing positive- and negative-permittivity constituents. From
the physical viewpoint, this is not surprising, since these
configurations may support surface-plasmon polaritons prop-
agating at the layer interfaces, whose coupling is known to
yield strong nonlocal effects [29].

Dispersion relationship for TM waves. In order to illustrate
the physical implications of the strong MPI nonlocal response,
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we analyze the dispersion relationship of TM waves Hy =
Uye

ik0(qxx+qzz), which readily follows from the constitutive
relationships in Eqs. (2), viz.,

δq4
z − (ε⊥ + κ2 + δε||)q2

z − ε||q2
x + ε||ε⊥ = 0. (4)

A first important consequence of second-order spatial disper-
sion (represented by δ) is that such an equation is biquadratic.
Moreover, the four coefficients in Eq. (4) depend on the
four independent effective parameters in Eqs. (3) which, in
turn, may assume comparable values. This implies that, in
principle, every possible dispersion regime arising from Eq. (4)
is accessible. Figures 1(b)–1(f) qualitatively illustrate, in terms
of isofrequency contours, the five possible and topologically
different dispersion regimes that can be attained: hyperboli-
clike I and II, mixed, and ellipticlike I and II, respectively.
It is remarkable that the relatively simple class of MPI
metamaterials is able to support such a variety of dispersion
regimes, comprising both bounded [Figs. 1(e) and 1(f)] and
unbounded [Figs. 1(b)–1(d)] propagating wave spectra whose
isofrequency contours can be either connected [Fig. 1(e)]
or disconnected [Figs. 1(b), 1(c), 1(d), and 1(f)]. Elliptic-
hyperbolic mixed regimes such as in Fig. 1(d) have been
predicted and experimentally observed [14,16,19], together
with additional-wave manifestations, in different metamaterial
configurations where second-order spatial dispersion plays a
key role in the absence of electromagnetic chirality. The dis-
tinctive feature of the ellipticlike II regime in Fig. 1(f) predicted
in 1D metamaterials is the presence of two propagating waves
with the same transverse wave number (i.e., an additional
extraordinary wave) within a limited qx spectral region.

Comparison with full electromagnetic theory. To validate
and calibrate the MPI effective model in Eqs. (2), we compare
its predictions with rigorous Bloch theory [30] and full-wave
numerical simulations [31] (see Ref. [25] for details). As a
first illustrative example, we consider a unit cell comprising
three homogeneous layers, two of which (labeled as 1 and 2)
constituting the inclusion, and the third one (labeled as 3)
representing the background [see Fig. 2(a)]. We consider
a parameter configuration with η = 0.1, layer relative per-
mittivities ε1 = 3.8, ε2 = −4.2, and ε3 = −0.2, and filling
fractions f1 = f2 = 0.4 and f3 = 0.2. Such a design fulfills
the MPI requirements in Eqs. (1), since |εB | = 0.2 � 1/η,
|εI | � 4 ∼ 1/η, and |ε(x)| = |f1ε1 + f2ε2 + f3ε3| = 0.2 �
1/η. For the chosen parameter configuration, we obtain
from Eqs. (3) ε⊥ = −9.2 × 10−2, ε|| = −1, κ = −0.41, and
δ = 3.4 × 10−3. This yields the ellipticlike II dispersion
regime in Fig. 1(f), where additional waves are expected, as
sketched in Fig. 2(a). Figure 2(b) compares the isofrequency
contours computed from Eq. (4) with the Bloch-theory [30]
solution. A fairly good agreement is evident, as well as the
occurrence of an additional extraordinary wave, which is
accurately captured by the MPI effective model. Note also that

ε(x) = −0.2 and [ε−1(x)]
−1 = −1, so that the standard (local)

effective-medium theory (EMT) [1] predicts that plane-wave
propagation is forbidden (evanescent) in the medium, in stark
contrast with the above evidence. It is worth stressing that,
in contrast to high-index-inclusion metamaterials [22], such
a regime dominated by spatial dispersion is accessed here
by means of moderate values of the layer permittivities. As
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FIG. 2. First example (details in the text). (a) Schematic of the
MPI metamaterial slab, and excitation of additional extraordinary
waves (thick arrows). (b) Comparison among the isofrequency
computed via the MPI effective model (blue solid curves), Bloch
theory (red dashed curves), and full-wave simulations (only for
qx = 0, green circle markers). (c) Magnitude distribution of the
average magnetic field |H̄y(z)|, normalized by the incident field.
(d) Corresponding spatial spectrum (magnitude), in arbitrary units.

a further validation check, we also analyzed via full-wave
simulations a MPI metamaterial slab of thickness L = 10 μm,
with the above parameters and period � = 0.1 μm, under
normally incident (along z) plane-wave illumination with
wavelength λ = 1 μm [see Fig. 2(a)]. Figure 2(c) shows the
magnitude of the average field distribution |H̄y(z)|, whose
standing-wave pattern reveals the occurrence of different
spatial harmonics. This is more evident in the corresponding
spatial spectrum (magnitude) shown in Fig. 2(d), which
displays four distinct peaks corresponding to two forward-
and two backward-propagating waves, thereby proving the
actual excitability of additional extraordinary waves in a
finite-thickness slab. For a more quantitative assessment, the
normalized wave numbers qz corresponding to the spectral
peaks are superimposed (circle markers) on the isofrequency
contours in Fig. 2(b), showing a good agreement with those
predicted by the above description of an unbounded MPI
metamaterial.

Further details on the range of applicability of our proposed
MPI homogenization scheme can be found in Ref. [25].

Topological transitions. The existence of various different
dispersion regimes implies that MPI metamaterials may also
host unusual topological transitions. As a second representa-
tive example, we consider a three-layer unit cell of period
� = 0.05 μm, with material constituents chosen as silver
(labeled as 1, and playing the role of the inclusion), silicon
dioxide (SiO2), and air (labeled as 2 and 3, respectively, and
playing the role of the background), with filling fractions
f1 = 0.15, f2 = 0.33, and f3 = 0.52. For silver, we utilize
the Drude model ε1 = εb − ω2

p/(ω2 + iαω) (with εb = 5.26,
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FIG. 3. Second example (details in the text). Complex isofre-
quency contours at three representative wavelengths (indicated in
the panels), computed via the MPI effective model (blue solid
curves), Bloch theory (red dashed curves), and EMT (magenta
dotted curves). Due to symmetry, only the branches pertaining to
forward-propagating waves are shown.

α = 7.06 × 1013 s−1, ωp = 1.45 × 1016 s−1 [32]), whereas
for SiO2 (ε2) we employ an empirical Sellmeier equation
[33]. Figure 3 shows the complex isofrequency contours (real
and imaginary parts of qz as a function of qx), at three
representative wavelengths λ = 0.5, 0.48, and 0.46 μm for
which the MPI requirements in Eqs. (1) are fulfilled. Once
again, the agreement between the MPI effective model and
Bloch theory is remarkably good at any wavelength, whereas
the EMT provides an inadequate description, as it captures
only a portion around qx = 0 of a single connected component

of the isofrequency contours. Note that, at λ = 0.5 μm, the
dispersion is of hyperboliclike I type, since the additional
branches [lower in Fig. 3(a), and upper in Fig. 3(b)] are
generated by the presence of loss (they disappear in the lossless
limit). On the other hand, at λ = 0.46 μm [Figs. 3(e) and 3(f)],
a mixed regime is observed, and this indicates that a topological
transition between the two regimes occurs. As also observed in
Ref. [18], such a transition is accompanied by an intermediate
state at λ = 0.48 μm [see Figs. 3(c) and 3(d)] where the two
dispersion branches of the mixed regime merge at qx = 0,
thereby yielding a wave-vector degeneracy and an associated
Dirac point.

Conclusions. In conclusion, we have introduced a class of
1D MPI metamaterials that may exhibit an anomalous electro-
dynamic behavior driven by nonlocal effects. By comparison
with other strategies for spatial-dispersion enhancement, our
proposed framework relaxes the requirements on the refractive
index of the inclusions, by affording moderate values. In
essence, the specific structure of the MPI requirements in
Eqs. (1) crucially alters the hierarchy of spatial-dispersion
orders, leading to an interplay between first- and second-order
nonlocal effects, whose strength may become comparable with
the local response. This in turns leads to a variety of different
dispersion regimes supporting exotic phenomena such as
topological phase transitions and additional extraordinary
waves. In view of their technological viability and potential
versatility, we believe that MPI multilayered metamaterials,
and their possible higher-dimensional extensions, may play a
pivotal role for conceiving different platforms for dispersion-
engineering applications over a broad electromagnetic spec-
trum, including the optical range.
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