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Note: Newly introduced equations are labeled with the prefix “S”; all others (as well as all 
references and figures) pertain to the actual paper. 
 
 
1. Determination of the coordinate-transformation parameters 
 
By substituting (11) in (5) [with (10a)], we obtain a biquadratic equation in the unknown tzk , whose 
real, positive solutions of interest are given by: 
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where the square-root arguments are assumed positive. Together with the known (conserved) 
tangential components [cf. (10a)], (S1) relates the transmitted wavevectors 1tk  and 2tk  to the 
incident wavevector and the coordinate transformation in (11). 
By enforcing (S1) in (10b), and recalling (9) and (11), we obtain the following system of two 
algebraic equations  
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which can be solved analytically in closed form, thereby allowing to express two coefficients (say 

0b  and 2b ) as a function of the remaining parameters, 
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Equations (S3) define a family of (infinite) coordinate transformations which satisfy the assigned 
kinematical characteristics of the two transmitted waves, for the given incidence conditions. 
 
 
2. Synthesis of the PC approximant 
 
The Bloch-type exact dispersion law for the 1-D multilayered PC of interest is given by: 
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with 2 2

, ,xa b a b zk k k= −  and , 0 ,a b a bk k ε= .  
In [9], a nonlocal homogenized model was developed in terms of a uniaxial medium whose 
dispersion law would match the exact dispersion law in (S4) up to the fourth order in ,a bd , with 
associated constitutive parameters similar to (12). In our case, we verified that, in view of the 
generally small dynamical ranges involved [cf. Fig. 2(c)], such approach yields a satisfactorily 
accurate modeling of the xk  dependence in zzε� . However, in order to accurately capture the zk  
dependence in xxε�  over the generally much larger dynamical ranges involved [cf. Fig. 2(b)], we 
found that a higher-order model is needed. Accordingly, we developed a modified nonlocal 
homogenized model: 
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whose coefficients are obtained by matching the exact dispersion law in (S4) up to the tenth-order 
in ,a bd . The analytical expressions of the coefficients nα  and nβ  (in terms of 0k  and the PC 
parameters aε , bε , ad , and bd ) can be straightforwardly obtained via symbolic manipulation 
softwares (e.g., Mathematica, www.wolfram.com), and are not reported here for brevity.  
The final step of the procedure consists of determining the parameters of the PC approximant by 
matching the nonlocal homogenized model in (S5) with the TO-based blueprints in (12). We 
verified that, as expected from the above observations, the coefficients 4α  and 6α  in (S5) are 
actually negligible over the parametric ranges of interest, so that the nonlocal-homogenized model 
and TO-based blueprint for zzε�  are functionally identical, and the corresponding matching can be 
enforced analytically via: 
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For xxε� , we were instead led to use a numerical strategy relying on a downhill-simples-based 
minimization of the root-mean-square mismatch within ( 10%± ) neighborhoods of the prescribed 
transmitted wavenumbers 1tzk  and 2tzk , with the constraint ( ) 0 2a bd d λ+ <  so as to avoid 
propagation of higher-order Bragg modes. In this framework, we recall that the TO-based blueprints 
in (12), actually represent a family of infinite transformation media [with 0a  and 2a  that are in 
principle free,  and 0b  and 2b  constrained by (S3)]. Such flexibility allows for a more effective 
parameter matching between the PC approximant and the TO-based blueprints. Overall, based on a 
large body of simulations, the proposed procedure was found to yield errors 10< °∼  between the 
prescribed and actual transmitted-wave directions. 
 
 
3. FDTD simulations 
 
The field map in Fig. 3 was obtained via an FDTD [29] simulation of a PC slab consisting of 890 
unit cells [see the inset in Fig. 2(b)], with 2.752aε = , 00.0668ad λ= , 2.082bε = − , and 

00.0332bd λ= , with an overall size of 089λ  (along x) × 015λ  (along z). The PC slab was 
illuminated by a collimated Gaussian beam with waist of size 0 015w λ= , impinging from a vacuum 
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region vacuum ( 0z < ) with an angle 40iθ = °  with respect to the z-axis. A uniform spatial 

discretization of step 0 120x z λΔ = Δ =  was assumed, with time sampling ( )05 2t x cΔ = Δ  (i.e., 

five-time smaller than the Courant stability limit). The computational domain was terminated using 
second-order Mur-type absorbing boundary conditions. At this stage, material losses were neglected 
in order to better highlight the wave-splitting phenomenon of interest. For the negative-permittivity 
layers, a plasma-type model  
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was used (with =1.756pω ω ), and implemented via the auxiliary differential equation (ADE) 
method [29]. 
 
 


