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Abstract—We propose a new, fast, and accurate numerical
technique for analyzing single-mode optical fibers with arbitrary
(transverse) refractive index profile. The method is based upon
a Pad́e (rational) approximation of the spectral domain Green’s
function of the fiber, obtained by solving a hierarchy of static
problems. The sought eigenfrequency and modal field are accord-
ingly estimated by computing, respectively, the dominant pole
and the related residual of the rational approximant. Numerical
simulations and comparison with known analytical results indi-
cate that the proposed method is highly accurate, reliable, and
computationally affordable.

Index Terms—Optical fibers, Pad́e approximants.

I. INTRODUCTION

T HE ever-increasing interest in numerical modeling of
optical fibers is witnessed by the huge amount of recent

technical papers devoted to this subject [1]–[9]. Most of the
fibers currently manufactured for long-distance communica-
tion systems areweakly-guidingand operate in thesingle-mode
range. In this connection, the design of the profile index
function is usually obtained by trial and error analysis so
as to optimize the dispersion characteristics and matching
them to the spectral features of specific sources. A practical
implementation of this procedure requires a fast and reliable
numerical tool for solving the scalar wave equation. As a
matter of fact, analytical solutions are available only for few
profiles; standard analytical approximation techniques (e.g.,
gaussian [10], [11]) cannot be applied for arbitrary profiles
and are known to fail in the low-frequency limit, while
available numerical techniques (including matrix approaches
[3], polynomial expansions [4], [7], Galerkin methods [1],
[5], [8], finite elements [9], and path-integrals [6]) become
inefficient in terms of memory allocation and/or computing
times if highly accurate results are required.

In this letter we present a novel approach, based upon a
Pad́e approximation of the spectral domain Green’s function,
which is shown to provide a very accurate approximation for
the dispersion law and the field distribution of the fundamental
mode over the useful spectral range, for any (transverse) index
distribution, with minimum storage requirements and CPU
times.
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II. THE METHOD

A longitudinally invariant graded-index circular fiber with
uniform cladding is considered. An time-harmonic
dependence is implicitly assumed throughout the remainder of
the paper. The refractive index profile is expressed as [10]

for
for

(1)

where is the radial coordinate and
is the so-calledprofile height parameter, being the
maximum core index and the clad index, respectively.

It is expedient to introduce some normalized parameters:

normalized frequency (2)

core modal parameter (3)

cladding modal parameter (4)

where is the free-space wavenumber andis the propagation
constant.

In the weakly-guidingregime i.e., the
radial behavior of the HE modes is ruled by the following
Sturm–Liouville equation [10]:

(5)

where and .1

For any fixed positive value of (guided modes) the
above problem admits a discrete infinity of eigenvalues
and related eigenfunctions which form
an orthonormal basis for i.e., [12]

(6)

being the Kronecker symbol. Our aim is to find out
the dispersion relation (usually represented as aversus
diagram) and the fundamental mode (HE). To this end, let

1Extension to the more general vector (or coupled-scalar) problem, though
possible in principle, entails considerable formal complications. In this letter
we limit ourselves to the simpler (though highly meaningful) case ofweakly
guiding fibers to highlight the physical content of the method.
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us consider the spectral domain Green’s function (ring source)
[12]:

(7)

which admits an expression in terms of the aforementioned
eigenvalues and eigenfunctions, viz., [12]

(8)

Since is meromorphic, Mittag-Leffler’s theorem [13]
suggests that it could be well approximated by a rational
function of the (square of the) frequency, viz.,

(9)

in any bounded frequency range. Actually, it will be shown
that a relatively low-order approximant does
provide a quite reasonable overall accuracy. In the following
we shall sketch a systematic procedure to find out an accurate
low-order rational approximant of the spectral domain Green’s
function over the useful (single-mode) bandwidth. First, since
the Green’s function is analytical with respect to the frequency,
one can expand it as a (truncated) McLaurin expansion2:

(10)

where the functions can be computed by solving a hierarchy
of static problems. In fact, taking into account the equivalent
integral formulation of the Green’s problem (7):

(11)

where [12]

for
for

(12)

being modified Bessel function of zeroth order
[15], and using (10) in (11) one readily finds the recursive
rule [12]

(13)

2Equation (10) can be recognized as a Stevenson series [14].

Starting from the (truncated)analytic element(10), one can
obtain an effective rational function approximation for the
spectral domain Green’s function by exploiting the concept of
analytic continuation and applying the Padé algorithm. This
technique determines the coefficients in (9) by requiring
that the McLaurin expansion of the rational approximant (9)
coincides up to the th term with (10). The rational
function approximation (9) will be accordingly referred to as
a Padé approximant. For conciseness, here we skip the
detailed description of the Padé technique and its theoretical
background; a thorough description may be found in [16] and
[17]. Once the Pad́e approximant (9) of (8) is computed, the
dominant eigenvalue and modal field can be readily deduced
by extracting, respectively, the dominant (real, positive) pole
and related residual, as seen from (8).

III. N UMERICAL IMPLEMENTATION AND RESULTS

Let us summarize the required steps of the method.

• Evaluate the McLaurin expansion coefficients using (13)
(which involves the computation of integrals up to
dimensions).

• Compute the rational approximant via Padé technique
[which involves the sequential solution of two linear sys-
tems of size and yielding the and coefficients
in (9)].

• Extract the dominant pole and related residual.

The first task is actually the most computationally demand-
ing, requiring -dimensional numerical quadratures [

]. However, in view of (12), one can conveniently split
each one-dimensional integral in (13) so that the integrand
function issmoothin each subintegral. Then, e.g., a gaussian
quadrature [17] can be used to compute efficiently the
subintegrals.3

Once the coefficients are computed, evaluating the
Pad́e approximant, its poles and residuals are relatively
straightforward. Obviously, due to the unavoidable reduced-
order modeling finite and the numerical approxima-
tions, the results (dispersion law and field distribution) will be
affected by errors. Actually, a rigorous investigation on the
effect of errors in the coefficients of the power series (10) on
the accuracy of the Padé approximants is not yet available.
However, a body of computational experiments suggest that,
though the analytical continuation problem is indeedill-posed,
the Pad́e approximant (9) shows a surprising stability, as far
as the estimation of the dominant pole is concerned [18],
provided the order of the approximant is sufficiently high.
In our numerical simulations we found that a (3, 3) Padé
approximant provided a reasonable tradeoff between accuracy
and computing times.

In order to illustrate the power of the proposed method
we analyze two refractive index profiles for which analytical
solutions are available, namely thestepand thequartic profile
[10]. For the latter we use as reference solution the power-
series expansion (100 terms) reported in [10]. In Fig. 1 the
relative accuracy of the approximate dispersion law in the

3In view of the mild behavior of the integrand functions, a three-points
formula [17] is adequate.
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Fig. 1. (3, 3) Pad́e approximants. Relative accuracy onU for step and quartic
profiles over the single-mode operation range.

Fig. 2. Exact and Padé-computed field distributions for step and quartic
profiles atV = 2:

single-mode frequency range, obtained using a diagonal
Pad́e approximant, is reported for both profiles. As

one can see, the accuracy is very good, especially in the low-
frequency limit. Note that each point of the curve requires only
5 s to be computed on a PC Pentium P200. Fig. 2 displays the
corresponding exact and approximate modal fields at a fixed
frequency. Again, the agreement with the exact solution is
excellent.

IV. CONCLUSIONS

We presented a novel effective numerical technique for
analyzing single-mode fibers with arbitrary profile, based upon
Pad́e approximation of the spectral domain Green’s function.

Computational features and comparison with known analytical
results confirm that the proposed method allows to achieve
uniformly high accuracy over the whole useful spectral range
with very little memory and CPU time requirements. It is thus
very well suited for fast and reliable cut and try optimization
of the (transverse) refractive index profile.
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