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Suitable shaping (in particular, flattening and broadening) of the laser beam has recently been proposed
as an effective device to reduce internal (mirror) thermal noise in advanced gravitational-wave interfero-
metric detectors. Based on some recently published analytic approximations (valid in the infinite-test-
mass limit) for the Brownian and thermoelastic mirror noises in the presence of arbitrary-shaped beams,
this paper addresses certain preliminary issues related to the optimal beam-shaping problem. In particular,
with specific reference to the Laser Interferometer Gravitational-wave Observatory (LIGO) experiment,
absolute and realistic lower bounds for the various thermal-noise constituents are obtained and compared
with the current status (Gaussian beams) and trends (mesa beams), indicating fairly ample margins for
further reduction. In this framework, the effective dimension of the related optimization problem, and its
relationship to the critical design parameters are identified, physical-feasibility and model-consistency
issues are considered, and possible additional requirements and/or prior information exploitable to drive
the subsequent optimization process are highlighted.
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I. INTRODUCTION

In all currently operating (and possibly future) interfero-
metric gravitational-wave detectors, the overall limit sen-
sitivity of the instrument is bounded by the noise floor,
which, in the most interesting observational frequency
band (30–300 Hz), is dominated by thermal noises in the
substrate and in the high-reflectivity coating of the test
masses. With particular reference to the Laser Inter-
ferometer Gravitational-wave Observatory (LIGO) experi-
ment [1], an introductory discussion of the various noise
components can be found in [2], and a numerical code for
computing the noise budget is available from [3]. Toward
the development of second-generation detectors, such as
Adv-LIGO [4], the quest for increasing the event rate in the
observational band has motivated the exploration of vari-
ous techniques for reducing the mirror thermal noise. With
specific reference to the coating Brownian noise (dominant
in the current baseline design featuring fused-silica test
masses), use of improved (low-mechanical-loss) materials
[5], geometric optimization of the coating design [6], and
flat-top (commonly referred to as ‘‘mesa’’) beams [7,8]
seem the most promising. The latter option, intuitively
motivated by the potential capability of a mesa beam
(MB) of better averaging the thermally induced mirror
surface fluctuations as compared to a standard Gaussian
beam (GB), has been numerically proved to yield signifi-
cant reductions in the overall thermal noise [9,10] and has

led to the development of a cavity prototype with non-
spherical ‘‘Mexican hat’’ (MH) profile mirrors [11,12].
Alternative (nearly concentric [13], nearly spheroidal
[14–16]) designs have been subsequently proposed to
cope with the inherent tilt-instability of the originally
conceived nearly flat configuration. Also, use of higher-
order modes in standard spherical cavities has been shown
to provide, in principle, comparable reductions without the
need of changing the mirror profile [17], but its practical
feasibility still remains to be assessed.

The method utilized in [10] to compute the coating and
substrate thermal noises for arbitrary-shaped beams relies
on a finite test mass (FTM) computationally intensive
numerical analysis based on the approach in [18,19].
More recently [20,21], a simple analytic approximation
has been derived in the infinite-test-mass (ITM) limit,
based on the approach in [22]. This approximation has
been validated and calibrated in [21] against the
FTM numerical solutions (see also the discussion in
Sec. III B 3). In view of its remarkably simple form, in
terms of spectral integral functionals of the beam intensity
profile, it appears suggestive to exploit it for addressing the
optimal beam-shaping problem, i.e., finding the beam pro-
file that minimizes a given thermal-noise constituent. In a
step-by-step approach, acknowledging the formal and
computational complexity of the arising optimization
problem, this paper addresses some key preliminary issues.
In particular, emphasis is placed on the a priori deduction
of absolute and realistic lower bounds for the various
thermal-noise constituents, the identification of the effec-
tive dimension of the problem, and how this depends on the
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critical design parameters, and the gathering of additional
requirements and/or prior information to be utilized in the
actual optimization problem.

Accordingly, this paper is organized as follows. In
Sec. II, the problem geometry, formulation, notation, and
strategy are outlined, with a compact review of the relevant
background theory (ITM approximation). In Sec. III, under
the idealized assumption of zero diffraction-loss (compact
spatial support) beam profiles, absolute lower bounds for
the noise constituents, as well as the corresponding beam
profiles over the mirror, are obtained in analytic form, by
solving a straightforward variational problem. Sub-
sequently, a key physical feasibility constraint (related to
the finite-spatial bandwidth of the cavity eigenmodes) is
taken into account by approximating the above compact-
support optimal profiles in a suitable L2 functional sub-
space, whose dimension is fixed by the diffraction-loss
constraint. This results in more realistic tighter bounds.
In this framework, the role of the number of electromag-
netic degrees of freedom [23] of the cavity in setting the
effective dimension of the optimization problem is high-
lighted. Moreover, some model-consistency issues are dis-
cussed in order to assess the practical relevance of the
results. In Sec. IV, the obtained absolute and realistic lower
bounds for the considered noise components are compared
to the levels currently achievable using GB and MB pro-
files. Finally, in Sec. V, conclusions and recommendations
are provided.

II. PROBLEM STATEMENT

A. Geometry

Referring to the problem geometry illustrated in Fig. 1,
we consider a standard Fabry-Perot optical cavity with two
identical, symmetric, nearly flat (nonspherical) mirrors of
radius a laid on cylindrical test masses, separated by a
distance L [see Fig. 1(a)]. The mirror (axisymmetric)
departure from flatness is described by h�r�, with r denot-
ing the radial coordinate in the mirror plane [see Fig. 1(b)].
In what follows, attention is focused on the axisymmetric
(i.e., �-independent) eigenmode field distribution ��r� on
the mirror, with implicit exp�{!t� time-harmonic depen-

dence. Note that, in view of the duality relations expounded
in [24], the results derived hereafter apply to the nearly
concentric case too [25].

B. Background: Infinite-test-mass approximations

In the ITM approximation [20,21], and in the low fre-
quency limit of interest for gravitational-wave interferome-
ters, the power spectral densities of the main coating and
substrate thermal-noise constituents of interest can be writ-
ten as

 S � C
Z 1

0
�q�1fH �j�j2����g2d�; (1)

where C is a noise-type- and frequency-dependent factor
(irrelevant for all further developments), q is a noise-type-
dependent scaling exponent (see Table I), ��r� is the
axisymmetric eigenmode field distribution on the mirror,
and

 H �F���� �
Z 1

0
F���J0�����d� (2)

denotes the Hankel-transform (HT) operator. Here and
henceforth, Jm denotes an mth-order Bessel function of
the first kind ([26], Sec. 9.1). The (axisymmetric) field
distribution ��r� satisfies the eigenvalue equation [27]

 ���r� �
Z a

0
K�r; r0���r0�r0dr0; (3)

where � denotes the half-roundtrip eigenvalue, and the
kernel is given by
 

K�r; r0� �
{k
L
J0

�
krr0

L

�
exp��{kL�

	 exp
�
{k
�
h�r� � h�r0� �

�r2 � r02�
2L

��
; (4)

with k � 2�=� denoting the free-space wavenumber (�
being the wavelength). Equations (3) and (4) can be rec-
ognized as a mapping between a mirror profile h�r� and a
set ��h� � f��m;�m�; m � 1; 2; . . .g of eigenstates. Here
and henceforth, unless otherwise specified, the field distri-
bution on the mirror is assumed to be normalized as
follows:

 

Z 1
0
j��r�j2rdr � 1: (5)

In addition, a further constraint has to be enforced on the

y

xa

a

z

( )z h r=( )z h r= −

r
θ

(a) (b)

L

a nearly-flat mirrors

test masses

FIG. 1. Problem schematic: A perfectly symmetric Fabry-
Perot optical cavity composed of two nearly flat mirrors [with
profile h�r�] attached on cylindrical test masses of radius a
separated by a distance L along the z axis. (a): Side view.
(b): Front view.

TABLE I. Thermal-noise constituents of interest and corre-
sponding scaling exponents [cf. (1)].

Noise type q

Substrate Brownian �1
Substrate thermoelastic 1
Coating Brownian and thermoelastic 0
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per-mirror diffraction loss [27]

 L ��� �
Z 1
a
j��r�j2rdr � 1� j�j2 
 LT; (6)

with LT denoting a design limiting value. For Adv-LIGO,
the reference figure is LT � 1 ppm (10�6). The
diffraction-loss constraint singles out a subset �C�h� �
��h� of admissible eigenmodes.

C. Formulation and notation

It is expedient to recast the problem into a canonical
form by introducing the scaled variables

 �r �
r
a
; �� � a�; (7)

and the scaled field distribution

 �� �r� � a�� �ra�: (8)

Here and henceforth, the overbar denotes scaled quantities.
The noise functional in (1) can accordingly be rewritten as

 S �
C

aq�2
�S�j�j2; q�; (9)

where

 

�S�j�j2; q� �
Z 1

0
��q�1fH �j�j2�� ���g2d ��; (10)

thereby explicitly factoring out the a��q�2� scaling law
predicted by the ITM approximation [20,21]. In what
follows, we focus on the scaled noise functional in (10),
which essentially accounts for the beam-shaping effects.
Unless strictly needed, the explicit dependence on j�j2 and
q will be omitted for simplicity of notation. The scaled
field distribution �� �r� in (8) satisfies the scaled version of
the eigenproblem in (3), which can be conveniently recast
as

 �����r� � {�ND exp��{V��r��H 1�exp��{V�����ND �r�;

(11)

where �� � � exp�{kL�,

 H 1�F���� �
Z 1

0
F���J0�����d� (12)

denotes the [0,1] interval-windowed HT operator, and

 V��r� � kh�a �r� �
�ND �r2

2
(13)

is a mirror-profile-dependent phase function, with

 ND �
2a2

�L
� 2NF (14)

denoting the so-called number of electromagnetic degrees
of freedom [23,28]. This parameter, whose relevance will
be illustrated later on (see Sec. III B), is strictly related to
the Fresnel number NF of the optical cavity [27]. In the

following we shall always assume the eigenfunctions as
normalized, viz.,

 k � k�
�Z 1

0
j���r�j2 �rd �r

�
1=2
� 1; (15)

with k � k denoting the usual L2
�0;1� (cylindrical) Hilbert

norm. Accordingly, we shall write the diffraction-loss con-
straint as

 L ��� �
Z 1

1
j���r�j2 �rd �r � 1� j ��j2 
 LT: (16)

D. The optimization problem

The optimization problem of interest consists of mini-
mizing the scaled noise functional in (10), acting on the
mirror profile h��r�, i.e., in finding the special mirror profile
h� �r� (within a suitable functional class, e.g., C1) for which

 min
�2�C�h�

k ��q=2H �j�j2� k2 (17)

takes on its smallest value, �C�h� denoting the subset of
eigenmodes obeying the diffraction-loss constraint (16).
The minimization of (17), subject to (16), represents a
formidable optimization problem, whose well-posedness
(i.e., existence and uniqueness of the solution and its
continuous dependence on data) cannot be taken for
granted, with the consequent ill-conditioning problems
that may arise in the numerical implementation. A further
complication is posed by the general nonconvexity of the
problem, which may result in multiple local minima that
may trap standard descent-based optimization techniques
(e.g., conjugate gradient [29]) into false solutions.
Therefore, global optimization techniques need to be ap-
plied, such as genetic [30], evolutionary [31], or particle-
swarm [32] algorithms, whose convergence is typically
rather slow. Taking into account that each iteration in the
optimization procedure may require several numerical so-
lutions of the eigenproblem in (11), the resulting overall
computational burden can become prohibitive. From the
above considerations, it is clear that any blind attempt of
attacking such a complex and computationally demanding
problem may be deemed to failure. In a step-by-step ap-
proach, it appears more reasonable to start addressing some
preliminary issues, such as

(i) A priori estimation of realistic lower bounds for the
various noise constituents, and comparison with the
current status and trends, in order to assess the
potential reduction achievable by further optimiza-
tion (and, hence, its worthiness).

(ii) Identification of the effective problem’s dimension,
as a function of the key cavity design parameters.

(iii) Gathering of prior information (e.g., optimal beam
profiles and associated structural features) to be
exploited in order to intelligently drive the optimi-
zation process.
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The rest of the present paper accordingly deals with the
above issues.

III. SOME THEORETICAL BOUNDS

A. Absolute bounds: Compact-support beams

The simplest and crudest approximation of the original
optimization problem in (17), leading to a well-posed and
analytically treatable problem, consists of assuming the
beam profile to exhibit a compact spatial support within the
[0,1] interval, thereby implying zero diffraction losses. As
we shall see, this implicitly prevents the profile from being
a solution of the eigenproblem in (11). Letting f � j�j2,
one is thus led to the variational problem in the space L1

�0;1�

of summable functions,

 

�S �min�
abs � min

f2L1
�0;1�

k ��q=2H 1�f� k2; (18)

under the constraints
 

f:�0; 1� ! R�; (19a)Z 1

0
f� �r� �rd �r � 1; (19b)

whose solution is given below. The arising results are
anticipated to provide absolute lower bounds, which may
not be attainable, in view of the mentioned unphysical
simplifying assumptions. From the Lagrange theory of
constrained optimization [33], the constrained variational
problem in (18) and (19b) can be recast into the uncon-
strained optimization of the Lagrangian functional [34]

 ��f;	� �k ��q=2H 1�f� k2 �2	
�Z 1

0
f� �r� �rd�r� 1

�
;

(20)

where	 is the so-called Lagrange multiplier. It is shown in
the Appendix that this problem admits a unique solution fs
(i.e., an absolute minimum), obtainable using variational
calculus, viz.,

 fs��r� � j�s� �r�j
2 � �q� 2��1� �r2�q=2; �1 
 q 
 1;

(21)

which also satisfies the positivity constraint in (19a). The
corresponding (minimum) noise components are given by

 

�S �min�
abs � 2q�1�

�
q
2
� 1

�
�
�
q
2
� 2

�
; (22)

with � denoting the Gamma (factorial) function ([26],
Sec. 6.1). The optimal beam profiles are shown in Fig. 2,
whereas the corresponding (minimum) noise values are
collected in Table II.

The following remarks are in order:
(i) The noise-minimizing beam profiles can exhibit step

discontinuities, or even singularities at �r � 1 (see
Fig. 2). This is neither surprising (in view of the
relaxation of the physical feasibility constraints)
nor undermining of the meaningfulness of the pre-
liminary results derived at this stage as (anticipated)
absolute lower bounds for the actual problem. The
reader is referred to Sec. III B below for more real-
istic bounds.

(ii) For the coating noises (q � 0), the optimal profile is
perfectly flat, thereby supporting previous intuitive
arguments in favor of flat-top beams [7,8].

(iii) For the substrate noises, the optimal beam profile is
appreciably rounded (nonflat) for the thermoelastic
component (q � 1). This should be taken into ac-
count when assessing the performance of configu-
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FIG. 2. Optimal (minimum-noise) compact-support beam pro-
files in (21). Continuous curve: substrate Brownian (q � �1);
dashed curve: coating (q � 0); dotted curve: substrate thermo-
elastic (q � 1).

TABLE II. Comparison between absolute [cf. (22)] and realistic (for a � 16 cm, i.e., ND �
12:03, extracted from Fig. 6) noise bounds. Also shown, as references, are the noise levels
attainable with GB and reference MB (minimum noise, for a � 16 cm, i.e., ND � 12:03,
cf. Figure 9) profiles.

q �S�min�
abs

�SBL= �S�min�
abs

�SGB= �S�min�
abs

�S�min�
MB = �S�min�

abs
�SGB= �SBL

�S�min�
MB = �SBL

�1 1.5708 1.145 2.965 2.043 2.591 1.785
0 2 1.313 6.907 3.238 5.256 2.465
1 4.712 1.552 13.658 4.454 8.801 2.870
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rations featuring sapphire test masses, for which
substrate thermoelastic noise is known to be domi-
nant [10]. In this framework, use of hyperboloidal
beams [14–16] as physically feasible approximants
should be explored. On the other hand, the optimal
intensity profile for the Brownian component (q �
�1) is close to flat, with a steep increase at the
mirror’s edge. This is clearly unphysical, but may
be suggestive of using an annular beam. Note that
the above results pertain to the minimization of a
single noise constituent. Extensions to the minimi-
zation of a given combination of noise constituents
are possible, but most likely need to be pursued
numerically, via suitable discretization of the in-
volved operators.

B. More realistic (tighter) bounds: Diffraction-loss vs
band-limitation constraints

Besides the diffraction-loss constraint, a less obvious
(and competing) constraint exists, stemming from an ab-
stract property of the eigenmodes of (11): band limitation.

1. Band-limitation property

Applying the HT operator at both sides of the eigenpro-
blem in (11) and using the more or less obvious identities

 H 1�f� �H ��� �r�f� �r��; H �H �f�� � f; (23)

with � denoting the unit rectangular-window function,
���� � 1, 0 
 � 
 1, ���� � 0, � > 1, one obtains

 H �� exp�{V����ND �r� � {
�ND

��
���r� exp��{V� �r���� �r�:

(24)

Equation (24) shows that the HT of the function � exp�{V�
(and, a-fortiori, of the function �) has a compact support,
vanishing outside �0; �ND�. Technically, the HT plays the
role of a wavenumber spectrum, and accordingly �ND is
the spatial bandwidth of the field. Note that the spatial
bandwidth is proportional to the number of electromag-
netic degrees of freedom ND in (14). It is therefore natural
to try approximating the optimal (but, as anticipated, un-
physical) beam profiles obtained in Sec. III A using a basis
in L2

�0;1� with finite-spatial bandwidth �ND. It is worth
stressing that no constructive procedure is given for retriev-
ing a mirror profile for which such a superposition is an
actual eigenmode. Nonetheless, being a physically admis-
sible (finite-spatial bandwidth) profile, it is expected to
yield tighter noise bounds, as compared to (22).

2. Prolate-spheroidal wave-function expansion

A more or less obvious choice for the space-band-
limited basis is provided by the so-called prolate-
spheroidal wave-functions (PSWFs) [35–38], which sat-
isfy the eigenproblem [39]

 �
’� �r� � {�NDH 1�’���ND �r�: (25)

In our implementation, the PSWFs are calculated follow-
ing the approach in [37]. It can be shown that (apart from
irrelevant complex multiplicative constants) the solutions
of (25), ’n, are real and satisfy the double-orthogonality
condition

 h’n; ’mi � �nm; h’n; ’mi1 � �
n�nm; (26)

where �mn is the Kronecker symbol, �
n indicates the nth
eigenvalue of (25), and h�; �i and h�; �i1 denote the L2

�0;1� and
L2
�0;1� (cylindrical) inner product, respectively. The eigen-

value spectrum of (25), shown in Fig. 3 for several values
of ND, has a steplike behavior: the first ND eigenvalues
are close to 1 in magnitude, while the remaining decay
exponentially to zero [36]. The semilog scale utilized in
Fig. 3 highlights the steplike behavior (with exponentially
decaying tail) of the eigenvalue spectrum. The double-
orthogonality condition in (26) implies

 

Z 1
1
j’m� �r�j

2 �rd �r � 1� j �
mj
2: (27)

In view of (27) and the noted behavior of the eigenvalues,
the first ND eigenmodes are almost fully localized in
[0,1], while the remaining ones are almost fully (de)local-
ized to �r > 1. A plot of a few PSWFs of increasing order is
shown in Fig. 4, for ND � 12 (corresponding, for L �
4 km and � � 1064 nm, to a mirror radius a � 16 cm of
interest for Adv-LIGO). Also shown, as a reference, is the
behavior of the infinite-mirror (LG-type) solutions. It is
observed that the agreement between the two is rather good

0 5 10 15 20 25 30
1E-30

1E-20

1E-10

1

m

| η
m

|

FIG. 3. PSWF eigenvalues (magnitude) as a function of order
m, for various values of ND. The semilog scale highlights the
step behavior with exponential tail (see the discussion in
Sec. III B 2). Squares: ND � 1; circles: ND � 5; up-triangles:
ND � 10; down-triangles: ND � 20.
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for low orders, for which the functions are localized, and
deteriorates as the order m approaches ND, beyond which
the functions exhibit the anticipated delocalization.

The best (in L2 norm) band-limited approximation of the
compact-support minimum-noise beam profiles is there-
fore provided by the PSWF expansion

 �BL� �r� �
XMT�1

m�0

cm’m� �r�; (28)

with the coefficients cm obtained via Fourier-type projec-
tion [40],

 cm �
h�s; ’mi1���������������������������������������PMT�1

n�0 �h�s; ’ni1�2
q : (29)

It is readily shown that the truncation order MT in (28) is
dictated by the prescribed diffraction loss. Under the ideal
steplike assumption for the eigenvalue dependence on in-
dex, whereby j �
mj � 1, 8m 
 ND and �
m � 0, 8m>
ND, the diffraction-loss constraint would be satisfied for
any MT 
 ND, however small the prescribed LT . A con-
servative estimate of MT , taking into account the actual,
albeit tiny, departure of the m<ND eigenvalue magni-
tudes from unity may be obtained from the obvious in-
equality

 L ��BL� �
XMT�1

m�0

�1� j �
mj
2�jcmj2


 �1� j �
MT�1j
2�

XMT�1

m�0

jcmj
2 � �1� j �
MT�1j

2�;

(30)

where use has been made of the double-orthogonality
conditions in (26), the fact that the j �
mj form a monotoni-
cally decreasing sequence, and the unit-norm constraint,
viz.

 

XMT�1

m�0

jcmj2 �k �BL k
2� 1: (31)

We accordingly get the following (conservative) estimate
for the truncation order, which sets the effective dimension
(number of available design parameters) of the beam (mir-
ror) optimization problem:

 MT � largest m:�1� j �
m�1j
2� 
 LT: (32)

For LT � 1 ppm, the truncation index MT computed from
(30) is plotted as a function ofND in Fig. 5. We may loosely
conclude that the effective dimension of the optimization
problem is

 MT & ND: (33)

The inequality in (30) will be reasonably tight when rep-
resenting functions that are essentially localized within the
unit-disc (mirror-confined beams), whose projection onto
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FIG. 4. PSWF profiles for ND � 12 and various orders (solid curves). (a): m � 0; (b): m � 2; (c): m � 5; (d): m � 8; (e): m � 10;
(f): m � 13. Also shown, as reference (dashed curves), is the behavior of the infinite-mirror (LG-type) solutions.
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the delocalized eigenstates with m * ND is negligibly
small.

More or less obviously, the accuracy of (28) is strictly
dependent on (and expected to increase with) the number
of terms in the truncated expansion. It therefore makes
sense to check how close one can get to the optimal profiles
for various meaningful values of ND [and hence, via (32),
MT].

Figures 6(a)–6(c) show the behavior of the noises asso-
ciated with the band-limited profiles in (28), referred to as
�SBL, as a function of ND. For all three cases, the noise
decreases with increasing ND, and appears to asymptoti-
cally approach values close to the absolute bounds in (22).
Recalling (14), the variation of ND was obtained by tuning
the cavity length L and the laser wavelength � at the
reference values in Adv-LIGO, and taking the mirror ra-
dius a within a realistic range (see the scale on the top axis
of Fig. 6). For each value of a (and, hence, ND), the
truncation index MT (cf. Fig. 5) was derived according to
(32), with LT � 1 ppm [41].
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FIG. 6. Realistic noise bounds obtained from band-limited
beam profiles [cf. (28)] and truncation index MT as in (32)
[cf. Fig. 5], as a function of ND. (a): Substrate Brownian (q �
�1); (b): Coating (q � 0); (c): Substrate thermoelastic (q � 1).
Also shown, as references, are the corresponding mirror-radius
scale (top axis, assuming L � 4 km and � � 1064 nm), the
absolute bounds [dotted lines, cf. (22)], and the noise values
for a � 16 cm (i.e., ND � 12:03).
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Figure 7 shows the corresponding band-limited beam
profiles for selected values of ND. For the q � 0 case
(coating Brownian and thermoelastic noises), for instance,
it is observed that, as ND increases, the profile tends to
exhibit a more rapid ripple and a steepest decay. It can be
argued that the flatness of the profile does not seem to be an
essential ingredient for the coating noise reduction.

To sum up, it is seen that the diffraction-loss constraint
sets an upper limit to the effective dimension of the opti-
mization problem, via the finite-spatial bandwidth property
of the physically admissible solutions of the cavity eigen-
state equation. Thus, the only way to approach the absolute
minima of the noise constituents acting on the beam/mirror
profiles, under a prescribed diffraction-loss constraint, is
by increasing ND, (i.e., if the cavity length and laser
wavelength are kept fixed, by increasing the mirror radius
a). However, as seen from Fig. 6, increasing ND (or,
equivalently, a) beyond a certain value pays little, as the
noise curves roll off very slowly beyond a certain point,
and tend to settle. Going, e.g., from a � 16 cm (Adv-
LIGO baseline design) to a � 23 cm reduces the coating
noise only by 14%. Moreover, besides the technological
challenges involved, this raises some model-consistency
issues related to the actual validity of the underlying ITM
approximation.

3. Validity of the ITM approximation

In [21], the ITM approximations in (1) have been vali-
dated and calibrated against the FTM numerical solutions
in [10], for GB and MB profiles. Assuming a 40 kg fused-
silica test mass and LT � 1 ppm (design specifications for
Adv-LIGO), the ITM predictions for a MB profile were
found to yield errors <10% in the coating (Brownian as
well as thermoelastic) noises and <25% in the substrate
Brownian noise (the thermoelastic noise component being
negligible for fused-silica test masses [10]), for mirror radii
a & 17 cm. For sapphire test masses, the error in the
(dominant) substrate thermoelastic noise component was
found to be comparable to the substrate Brownian case for
fused silica. Assuming that comparable figures apply to the
band-limited beam profiles in (28) too, some representative
values of the realistic bounds for the case a � 16 cm
(ND � 12:03) are reported in Table II [scaled to the cor-
responding absolute bounds in (22)]. One observes a mod-
erate increase, as compared with the absolute bounds, of a
factor 1:14 for the substrate Brownian noise, 1:31 for
the coating (Brownian as well as thermoelastic) noises, and
1:55 for the coating thermoelastic noise.

IV. COMPARISON WITH CURRENT STATUS AND
TRENDS: GAUSSIAN AND MESA BEAMS

It is suggestive to compare the above derived bounds
with those attainable by the current (Gaussian) and pro-
posed (mesa) beam profiles. For these profiles, without
solving the eigenvalue problem in (11), one can exploit

simple approximate analytic solutions for the dominant
eigenmode, valid in the (transversely) infinite-mirror limit,
estimating the relevant diffraction losses via the so-called
‘‘clipping approximation’’ [42], i.e., by using the infinite-
mirror approximate field distributions in the first equation
in (16).

A. Gaussian beams

The scaled field distribution, in the infinite-radius-mirror
approximation, for a GB can be expressed as

 �GB��r; �w0� � �GB exp
�
�

�r2

2 �w2
0

�
; (34)

where �GB is a normalization constant, and the waist
parameter �w0 is fixed by the clipping-approximated
diffraction-loss constraint,

 �w 0c � �� logLT�
��1=2�: (35)

In view of the particularly simple analytic expression of the
field intensity distribution (and of its HT), the scaled noise
functional in (10) can be computed in closed form,
 

�SGB �k ��q=2H �j�GBj
2� k2

�
2q=2��q2� 1��� logLT�

�q=2��1

�1�LT�
2 ; q � �1: (36)

B. Mesa beams

A MB profile supported by a nearly flat MH-shaped
mirror can be synthesized via coherent superposition of
GBs, with identical waist parameter w0 and parallel optical
axes, launched from a circular aperture of radius R0 in the
waist plane. As shown in [15,16], in the infinite-mirror
approximation, such a beam profile can be effectively
represented in terms of a Laguerre-Gauss (LG) expansion,
which, in the scaled form used here, can be written as [43]
 

�MB� �r; �R0; �w0; ND� � �MB exp�{�� �r��
X1
m�0

Am� �R0; �w0; ND�

	  m

� ���
2
p

�r

�w0

����������������������
1� 1

�2N2
D �w4

0

q �
: (37)

In (37), �MB is a normalization constant, �� �r� is an
irrelevant phase distribution, and the expansion coeffi-
cients Am are given by

 Am� �R0; �w0; ND� � ��1�mP
�
m� 1;

�R2
0

2 �w2
0

�

	 exp
�

2{m arctan
�

1

�ND �w2
0

��
; (38)

with P denoting an incomplete Gamma function ([26],
Eq. (6.5.13)). The orthonormal LG basis functions in (37)
are
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  m��� �
���
2
p

exp
�
�
�2

2

�
Lm��

2�; (39)

with Lm denoting anmth-order Laguerre polynomial ([26],
Chap. 22). In the most general case, the scaled MB profile
depends on three parameters: �R0, �w0, and ND. However,
the (clipping-approximated) diffraction-loss constraint in-
troduces a relationship �R0 � �R0c� �w0; ND�, illustrated in
Fig. 8 for several representative values of ND, which
reduces the number of independent parameters to two
� �w0; ND�. It is worth noticing that, in the topical MB
literature, the waist parameter �w0 is heuristically chosen
according to a minimum-spreading criterion [44], viz.

 �w �MS�
0 �

1

a

����
L
k

s
�

1�����������
�ND
p ; (40)

in an attempt of achieving the best tradeoff between top-
flatness and edge-steepness of the beam intensity profile.
This further reduces the number of independent parameters
to one (ND). When minimizing the noise functional in (17),
the above choice, while intuitively sound, is not necessarily
justified a priori from the mathematical viewpoint, and the
more general two-parameter optimization problem

 

�S �min�
MB � min

�w0;ND2R
k ��q=2H �j�MBj

2� k2 (41)

should be considered instead. However, the heuristic
minimum-spreading criterion in (40) is pretty close to
optimal for sufficiently large ND. As an illustrative ex-
ample, the functional in (41) for q � 0 (coating

Brownian and thermoelastic noises) is shown in Fig. 9 as
a function of �w0 [scaled to the reference minimum-
spreading value in (40)], for several representative values
of ND, within the parametric range of potential interest for
Adv-LIGO. It is observed that the curves at fixed ND
exhibit a broad minimum around (but not exactly at) �w0 �

�w�MS�
0 , which becomes deeper and broader as ND is in-

creased. A similar behavior is observed for the substrate
Brownian (q � �1) and thermoelastic (q � 1) noises, and
is not shown for brevity.

C. GB vs MB vs absolute and realistic bounds

The noise levels achievable via a GB profile and a
reference MB profile (minimum noise, for a � 16 cm,
i.e., ND � 12:03, cf. Fig. 9), scaled to the corresponding
absolute and realistic bounds derived in Sec. III, are also
included in Table II [45]. As already established in [10],
MB profiles yield consistently lower noises than the GB
counterparts, with reductions of nearly a factor 2:13 in
the coating (Brownian as well as thermoelastic) noise, and
of 1:45 and 3:07 in the substrate Brownian and ther-
moelastic noise components, respectively.

By comparison with the absolute and realistic bounds,
one notes a potential for significant further reductions.
Specifically, as compared to the MB reference values, the
realistic bounds indicate potential reductions of nearly a
factor 1.8, 2.5, 2.9 for the substrate Brownian, coating
(Brownian as well as thermoelastic) and substrate thermo-
elastic noises, respectively, thereby justifying the further
exploration of alternative numerical-optimization-driven
configurations.

D. Optimal vs good profiles

On the basis of the above analysis, a robust (e.g., ge-
netic) optimization algorithm based on a mirror parame-
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FIG. 9. As in Fig. 8, but coating (q � 0) noises as a function of
�w0 (scaled to its minimum-spreading value).
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FIG. 8. Relationship between the MB parameters �R0 and �w0

arising from the clipping-approximated diffraction-loss con-
straint (LT � 1 ppm), for various values of ND (assuming L �
4 km and � � 1064 nm). Squares: ND � 6:77 (a � 12 cm);
circles: ND � 9:21 (a � 14 cm); up-triangles: ND � 12:03 (a �
16 cm); down-triangles: ND � 15:23 (a � 18 cm); diamonds:
ND � 18:80 (a � 20 cm); stars: ND � 22:74 (a � 22 cm).
White bullets mark the minimum-spreading configurations
[cf. (40)].
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terization consistent with the problem’s effective dimen-
sion, aimed at getting as close as possible to the realistic
(lower) noise bounds, could be implemented with relative
ease.

It should be stressed, however, that any optimal design
should also cope with some more or less obvious additional
requirements to be also rated as a good design, e.g.,

(i) the optimal mirror should note pose critical techno-
logical challenges;

(ii) the optimal field should be easy to launch, i.e.,
should couple effectively to the injected laser
beam; and

(iii) the optimal field should be reasonably stable
against misalignment and mirror manufacturing
tolerances.

Any candidate suboptimal designs should be ultimately
gauged on the basis of their compliance with the above
practical requirements.

V. CONCLUSIONS AND PERSPECTIVES

In this paper, based on the ITM approximations in
[20,21], we have addressed some key preliminary issues
in connection with the optimal beam-shaping problem for
thermal-noise reduction in advanced gravitational-wave
interferometric detectors. The main conclusions can be
summarized as follows:

(i) The estimated lower bounds in a realistic configura-
tion, accounting for physical-feasibility-induced
(diffraction losses, band limitation) and model-
consistency (ITM approximation) constraints, indi-
cate the possibility of significant noise reductions
(cf. Table II) as compared with the current status
and trend. In particular, for the coating noise (domi-
nant for the case of fused-silica test masses), a po-
tential reduction of nearly a factor 2.5 is estimated,
as compared with the MB counterpart.

(ii) The key role of the number ND of electromagnetic
degrees of freedom (strictly related to the Fresnel
number) of the optical cavity in establishing realis-
tic lower bounds has been highlighted. In this con-
nection, while the possibility of increasing ND by
acting on the cavity length or the laser wavelength
does not appear technologically viable for second-
generation detectors (thereby leaving the mirror
radius as the only adjustable design parameter), it
could be taken into account for third-generation
instruments.

(iii) From inspection of the band-limited beam profiles
derived in Sec. III B 2, one can infer important
(sometime counter-intuitive) prior information to
intelligently drive the optimization process. For
instance, for the coating noises, it clearly emerges
that the flatness of the beam is not a critical require-
ment, since profiles with ripples (cf. Fig. 7) can
perform better than flat-top MBs. This observation,

which is also consistent with the results obtained
using higher-order modes in spherical-mirror cav-
ities [17], should be taken into account when pa-
rameterizing the functional space chosen for the
optimization problem.

We believe that the above results pave the way for the
actual optimization problem, for which a genetic-
algorithm implementation (based, e.g., on an augmented
Lagrangian formulation) [30] is currently under investiga-
tion. Interesting research directions include extensions of
the preliminary study to higher-order (multipolar, nonax-
isymmetric) modes.

While preparing this paper, we became aware of work
done independently by M. Bondarescu and Y. B. Chen
([46], Chap. 3). Via a constrained-gradient-flow optimiza-
tion of an LG-parameterized beam profile [27], they suc-
ceeded in retrieving a special (nearly conical) mirror
profile which minimizes the coating (Brownian and ther-
moelastic) noise. Remarkably, their results provide a nice
independent confirmation of the general conclusions drawn
here. Indeed, they demonstrate the computational afford-
ability of the optimization procedure, and confirm the key
role of the mirror radius in setting the tradeoff between
diffraction loss and noise reduction, in complete agreement
with the general scenario outlined here. Also, the minimum
noise achieved by their design gets pretty close to our
corresponding realistic bound. The reader is referred to
[46] for further implementation and computational details.
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APPENDIX: MINIMIZATION OF THE
LAGRANGIAN FUNCTIONAL IN (20)

The stationary solution of the variational problem ob-
tained equating to zero the functional derivative of (20) can
be easily derived using the Gateaux differential

 lim
�!0

��fs � ��f;	� ���fs;	�
�

� 0; 8�f 2 L1
�0;1�:

(A1)

It is readily verified that

 

��f� ��f;	� � ��f;	�

� 2�
�
h ��q=2H 1�f�; ��q=2H 1��f�i

�	
Z 1

0
d �r �r �f��r�

�
� �2 k ��q=2H 1��f� k2 : (A2)
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By using (A2) in (A1), and interchanging the spectral and spatial (HT) integrals in the inner product, the stationarity
condition can be equivalently written as

 

Z 1

0
d �r
�Z 1

0
d �� ��q�1J0� �� �r�

Z 1

0
d �r0 �r0fs� �r0�J0� ���r0� �	

�
�r0�f��r� � 0; 8�f 2 L1

�0;1�; (A3)

from which it follows that the stationary profile fs satisfies the integral equation

 

Z 1
0
d �� ��q�1J0� �� �r�

Z 1

0
d�r0 �r0fs��r0�J0� ���r0� � 	; 0 
 �r 
 1: (A4)

Equation (A4) can be solved in closed form, by inspection. Indeed, we capitalize on its nested-HT structure to use the
following integral identities:

 

Z 1
0

��q=2J�q=2��1� ���J0� �r ���d �� � 2q=2�
�
q
2
� 1

�
; 0 
 �r 
 1; �1 
 q 
 1; (A5)

(see, e.g., [47], Eq. (2.12.31.1)), and

 �� q=2J�q=2��1� ��� �
2��q=2� ��q�1

��q2� 1�

Z 1

0
d�r0 �r0�1� �r02�q=2J0� ���r0�; q � �1; (A6)

(see, e.g., [47], Eq. (2.12.3.6)). By combining (A5) and (A6) one obtains

 

2�q

���q2� 1��2

Z 1
0
d �� ��q�1J0� �� �r�

Z 1

0
d �r0 �r0�1� �r02�q=2J0� ���r0� � 1; 0 
 �r 
 1; (A7)

which, by comparison with (A4), yields

 fs� �r� � 	
�1� �r2�q=2

���q2� 1��2
; 0 
 �r 
 1: (A8)

The as yet unspecified multiplier 	 in (A8) is chosen so as
to satisfy the normalization constraint in (19b),

 	 � 2q�q� 2�
�

�
�
q
2
� 1

��
2
; (A9)

thereby yielding the final result in (21).

From (A2) and (A4), it follows that

 

�S�g� � �S�fs� �k ��q=2H 1�g� fs� k2;

8g 2 L1
�0;1�:

Z 1

0
g� �r� �rd�r � 1:

(A10)

Therefore, from the readily verifiable positive-definiteness
of the functional norm in (A10), one concludes that the
stationary profile fs in (21) yields the absolute minimum of
the noise functional in (18).
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