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Abstract—This paper is concerned with a study of the two-di-
mensional (2-D) time-harmonic scattering by aperiodically-or-
dered 1-D planar strip arrays based on two-symbol substitutional
sequences, under Kirchhoff physical-optics approximation. In this
connection, theoretical results from solid-state physics, dwelling on
concepts from discrete geometry and number theory, are briefly
reviewed and applied to the characterization of the scattering
signatures of the above physical configuration. Parametric studies
are presented in order to flesh out some of the above concepts and
to highlight wave-features which are thought as being represen-
tative of a fairly broad class of regular non-periodic scatterers.
Potential applications are also envisaged.

Index Terms—Aperiodic order, quasicrystals, scattering, substi-
tutional sequences.

1. INTRODUCTION

HE pioneering studies, during the 1960s and 1970s, of ape-
T riodic tilings exhibiting long-range order (see [1]-[3] for
an introductory review), and the first experimental evidence,
linked with the discovery of “quasicrystals” in the 1980s [4],
[5], have motivated a growing interest in the study of aperiodi-
cally-ordered geometries in the largely unexplored “gray zone”
that separates perfect periodicity from absolute randomness.
Within this context, the possibility of unveiling new phe-
nomena and envisaging new applications in electromagnetics
(EM) engineering has stimulated the investigation of the
electrodynamic observables induced by aperiodically-ordered
geometries, with main focus on photonic bandgap (PBG)
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quasicrystals (see [6]-[19] for a sparse sampling). Against this
background, in an ongoing series of investigations [20]-[22],
we have concentrated on the time-harmonic radiation properties
of representative classes of one-dimensional (1-D) and 2-D
aperiodic configurations, also addressing potential engineering
applications to thinned and/or multibeam (possibly reconfig-
urable) antenna arrays. In all of these examples, either the
element excitations [20], [21] or the inter-element spacings
[22] were somehow constrained.

In the present study, we move one step further by studying
the time-harmonic oblique-plane-wave-excited scattering sig-
natures of a fairly broad, though relatively simple, class of
1-D aperiodically-ordered arrays, composed of two arbitrary
types of strips and two arbitrary inter-element spacings, ar-
ranged according to a two-symbol substitutional sequence.
Capitalizing on a number of theoretical results from discrete
geometry and solid-state physics [23]-[29], we address the
analytic parameterization of the arising scattering signatures
in terms of the well-known Floquet/Bragg-type spectral con-
stituents that are typically encountered in the study of strictly
or weakly-perturbed periodic structures (see, e.g., [30]-[34]),
plus other constituents that have no counterpart in periodic
structures. Moreover, we present a series of parametric studies,
in order to flesh out the above concepts and to highlight the role
of the various parameters and degrees of freedom.

Accordingly, the remainder of the paper is laid out as follows.
Section II introduces the problem geometry and formulation,
based on a Kirchhoff physical-optics (PO) model. Section III
briefly reviews the theoretical results borrowed from solid-state
physics for the characterization of the scattering signatures
of the aperiodically-ordered arrays of interest; the interested
reader may address the cited references [23]-[29] for a full
formal account. Section IV illustrates the numerical studies
carried out for representative aperiodic geometries (Fibonacci,
Thue-Morse, period-doubling, Rudin-Shapiro) and various pa-
rameter configurations (scale-ratio, strip width and constitutive
properties, array size). Section V contains some concluding
remarks.

II. PROBLEM GEOMETRY AND FORMULATION

A 1-D array of coplanar strips centered at * = x,,
n =20,1,...,N — 1, and assumed to be infinitely long in the
y-direction, is illuminated by a time-harmonic [exp(jwt) time
dependence], unit-amplitude, plane-wave with y-polarized
electric field E'(x, z) = exp[—jko(x sin §° — z cos 6")], where
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Fig. 1. Problem geometry. A time-harmonic plane wave with y-polarized elec-
tric field illuminates a 1-D aperiodic array of N coplanar strips placed along the
x-axis. The strip centers, widths, center-to-center inter-element distance, and
reflection coefficients are denoted by .,,1,,d,, and T, respectively (n =
0,...,N —1). Also shown is the 2-D polar (R, §) reference system centered
at xg = 0.

ko = wy/eopo = 2m /Ao denotes the free-space wavenumber
(with \g = free-space wavelength), and 6* denotes the in-
cidence angle relative to the z-axis (see Fig. 1). The strip
with center location z, has width [,,, and spectral reflec-
tion coefficient I';,, n = 0,1,...,N — 1. Also shown in
Fig. 1 is the 2-D polar [Ry = Vz2 + 22,0 = arctan(z/x)]
reference system centered at the array end-point zg = 0.
Using a standard Kirchhoff PO approximation (E-for-
mulation, neglecting the inter-element coupling) [35] for
the y-directed scattered far field in the Fraunhofer region
(Ro > 213 _,/Xo). and introducing the spectral variables
k. = kosin®, k! = kosin 0%, k, = \/k% — k2 = ko cos 0, one
obtains the following approximate spectral model

N-—1
Ex(kas k) ~ > ke, k) exp [ (ko — k) 2]

n=0

ey

where the single-element scattering response (SESR)
(ky — k2) zn]

sin

. . /) l 2

Fo (ke ky) = Dn(kL)ks .
( ) ( ) wkoRo ke — k;

TSI

©))

can be controlled, in principle, by varying the strip width [,
and/or its reflection coefficient I'y,. It is assumed that the strip
widths [,,, the inter-element spacings d,, = x,4+1 — T, and
the spectral reflection coefficients I',, [and hence the SESR F),
in (2)] can take on only two possible values (labeled with sub-
scripts “,” and “}”, respectively) chosen according to a sym-
bolic sequence generated from a two-symbol alphabet

Un =50S81- -SN_1, Sn E{a,b}. 3)
Attention is focused on a particular arrangement within rather
general aperiodically-ordered array configurations based on
substitutional sequences [28], [29] generated by substitution
rules of the type

{ E(a) = (qu(a, b) (4)

£(b) = Brs(a,b)
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where ¥, (¢ = a, 3) denotes a sequence of total length u + v
consisting of some permutation of a number u of “a” symbols
and a number v of “b” symbols. Starting from a given initial
string (“seed”), a substitutional sequence is generated by iter-
ating the substitution rules in (4) ad infinitum.

III. SUMMARY OF RELEVANT THEORETICAL RESULTS

A. Generalities

Our present investigation is structured according to prim-
itive substitution rules, characterized by (p + s)qgr # 0,
which generate infinite, generally-aperiodic sequences [28],
[29]. For these geometries, exploiting some theoretical re-
sults available in the discrete-geometry and crystallography
literature [23]-[29], analytic parameterization of typical ape-
riodic-order-induced wave-dynamical phenomenologies can
be addressed in terms of Bragg-type spectral constituents that
are also encountered in the study of periodic structures, plus
certain diffused ‘“‘singular-continuous” and “absolutely-con-
tinuous” constituents that have no periodic counterpart (see,
e.g., [25], [26] for details). As well known, Bragg-type spectral
constituents are associated with field intensities which scale
as ~ N2 (N being the size of the array), yielding Dirac-delta
spectral peaks in the infinite-array limit. Loosely speaking,
singular-continuous spectral constituents are associated with
field-intensity scaling of the type ~ N*, 1 < a < 2, yielding
weaker (i.e., non-Dirac-delta) spectral peaks; they are typi-
cally associated with intermediate forms of aperiodic order,
and generally exhibit multifractal character [25], [26]. Con-
versely, absolutely-continuous constituents are associated with
field-intensity scaling of the type ~ N, yielding noise-like
flat background spectra; such behavior is typical of random or
quasirandom geometries.

Within this framework, a key role is played by the substitution

matrix
ol
= roS

which describes the symbol distribution in (4), [2], [28], [29]. It
can be shown that, for the case of primitive substitution rules,
the substitution matrix in (5) admits two real eigenvalues A
and Ao, with Ay > |A2| [28], [29]. Moreover, in the infinite-se-
quence limit, the two symbols occur with well-defined frequen-
cies, with the symbol-frequency ratio (SFR), i.e., the ratio be-
tween the numbers of “a” and “b” symbols, approaching the
value [28], [29]

(&)

_Al—s_ r
_A1—P

7Na+Nb:N- (6)

For these geometries, a comprehensive characterization of the
Bragg-type mode (BM) spectra has been addressed in [28],
[29], following up on the pioneering analysis by Bombieri and
Taylor [23], [24] based on the so-called Pisot-Vijayaraghavan
(PV) condition. The analysis in [28], [29] is based on a working
model that, in spite of the slightly different notation, is equiva-
lent to the PO spectral model in (1). This model is first recast in
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suitable recursive forms, and the analysis is eventually reduced
to the study of the fixed-points (mod 27) of the 2-D map

, ke — kL) dy
Prrg =SM 2y, By = [( ) } (7

= (ko — K1) dy

The main results, asymptotically valid in the infinite-array limit,
can be summarized as follows (see [28], [29] for more details).
BM wavenumbers for aperiodic structures, unlike those for the
periodic case, are generally unevenly spaced. The BM spectrum
generally depends on the eigenvalues of the substitution matrix
in (5), and on the scale-ratio d, /d. Interestingly, the substitu-
tion matrix depends only on the number of symbols in the substi-
tution rules, and not on their ordering. For rational values of the
scale-ratio, there exist also “trivial” BM whose wavenumbers do
not depend on the substitution rules. The modal amplitudes gen-
erally do depend on the symbol ordering in the substitution rule
for the “nontrivial” BM, as well as on the incident field and the
scattering response of the strip elements. Thus, some BM may
not be excited for certain particular geometry and/or parameter
configurations.

In what follows, the most relevant results are compactly re-
viewed via the illustration of representative examples, which are
strictly related to the parametric studies in Section IV.

B. Examples

1) Trivial BM: These BM can be exhibited by any 1-D strip
array arrangement (even random [36]), regardless of the substi-
tution rule. For this reason, such BM are referred to as “trivial”.
It can be shown that, for irrational d, /dy, the only trivial BM
is k, = k; (specular reflection), whereas, for rational d, /dy,
there are infinitely many trivial BM at wavenumbers

.9 )
bom = kit o = ki+Cn, Vm,n €Z:nd, =mdy, (8)
da db
with excitation intensities [28], [29]
. Fo (Ko K2) + Fy (Ko, K2) |
B3y (koo ki) 2~ N2 X i 2 Ee)l
| N ( ’ .r)| (Xda+dl))2
)

From (9), it is understood that trivial BM excitation amplitudes

depend on the wavenumber only via the SESR F, and F},. These

modes can be “suppressed”, in principle, by properly tuning the
array parameter configuration so that

Fy (kam, ky) = —xFa (kom. ky) - (10)

2) Fibonacci Sequences: Fibonacci sequences are character-

ized by the following substitution rule, substitution matrix and

eigenvalues, and SFR (see [2], [21] for details and alternative
generation procedures)

(1)
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It can be shown that the associated nontrivial BM spectrum is
given by [28], [29]

T 27 (mT + n)

v ) "

,m,n € Z.
This type of spectrum, generated by integer combinations
of two incommensurate spatial frequencies, is referred to as
quasiperiodic. It can be shown that no diffused constituents
exist, and thus the spectrum is purely Bragg-type [2], [26],
[29]. The quasiperiodic spectrum in (12) is typical of substi-
tution rules characterized by |Az| < 1 and |[A;As] = 1, and
represents a particular case of a more general type of spectrum
called “infinite-quasiperiodic” [28], [29]. Infinite-quasiperi-
odic spectra are typical of substitution rules characterized
by |[A2] < 1, and are generated by the superposition of an
infinite number of [-indexed quasiperiodic spectra scaled by
a factor (A1A5)'; typical examples are provided by general-
ized-Fibonacci sequences of the type £(a) = aPb?,{(b) = a,
2 < g < p+1, with sP denoting the concatenation of p symbols
“s” (e.g., a® = aaa) [28], [29].

3) Thue-Morse Sequences: Thue-Morse (TM) sequences
are characterized by the following substitution rule, substitution
matrix and eigenvalues, and SFR (see [37] and [38] for details)

& i 2=

It can be shown [28], [29] that they admit a periodic BM spec-
trum, identical to that of a periodic structure made of composite
“ab” unit cells

}] A =2A=0,x=1. (13)

2mm

k?‘m = k; YRS
@ s T (o + o)

,mel. (14)
This should not be surprising, since the two sequences share
the same substitution matrix. The differences between TM and
periodic sequences emerge in the modal excitation amplitudes
and the presence of singular-continuous constituents in the TM
spectrum. In fact, the spectral signatures of the TM sequence
depend critically on the scale-ratio d,, /d;. For the case d, = d,,
the odd-m amplitudes are zero, and the only surviving (even-m)
BM correspond to the trivial ones in (8). Even these BM can
be suppressed [cf. (10)] by choosing F;, = —F,, yielding a
spectrum completely devoid of the BM portion.

As noted previously, TM-based arrays are also characterized
by singular-continuous spectral constituents. To the best of
our knowledge, the only available results pertain to particular
cases where either the inter-element spacings or the SESR
are somehow constrained (see, e.g., [26], [39]-[41]). For in-
stance, for the case of equal SESR (F, = F}) and arbitrary
inter-element spacings, it can be shown that there exist sin-
gular-continuous modes at wavenumbers [41]

2mm
(20 — 1)(d, + dp)
m € Z,1 € N,mod(m,2l — 1) # 0.

kxml = k; +
(15)

The above expression also holds for equal inter-element spac-
ings (d, = d;) and opposite SESR (F,, = —F},) [26], for which
the BM spectrum is completely suppressed, thereby rendering
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the singular-continuous spectrum most representative. It can be
shown that the largest scaling exponent in the field intensity is
a(kz12) = log3/log2 ~ 1.585 [41]. Moreover, for a given sin-
gular-continuous mode at wavenumber k, and with scaling ex-
ponent &, the same scaling exponent is also found at wavenum-
bers [41]

27Q)
(da + db)

The reader is referred to [26], [39]-[41], where the multifractal
character of the TM singular-continuous spectrum is investi-
gated in detail.

4) Period-Doubling Sequences: Period-doubling (PD) are
characterized by the following substitution rule, substitution
matrix and eigenvalues, and SFR (see [26], [41] for more
details)

{gEZ)):ZSQZB (1)}7A1:2»A2=—1,X:2. (17)

PD-based arrays may exhibit a BM spectrum, whose nature de-
pends critically on the scale-ratio d, /dy. In particular, for irra-
tional d, /dy, only the specular-reflection trivial BM (k, = k)
exists. Conversely, for rational d,/d, # 1, one obtains a peri-
odic-like BM spectrum [41]

PR = k4 27F |k — KL + ,P.QeZ. (16)

i 2mm _ 2dg +dy
kiE’an - k:r + 21d(z'n ’ dav o 3
1=0,1,....L,meZ (8)
n(da - db)
7, = 7:J,=-"0a” @) g
: {"e YE o 2d, + dy) © }
L=max{l e N:Z; #0}. (19)

For the special case d, = d;, the BM spectrum assumes the
form [28], [29]

2

kxmlzk;:—i__maleN?meZ (20)

2td
which is referred to as “infinite-periodic” (superposition of
an infinite number of [-indexed periodic spectra scaled by a
factor 2'). PD-based arrays are also characterized by singular-
continuous spectral constituents. Also in this case, available
results pertain to particular configurations of the inter-element
spacings and/or the SESR [26], [41]. For instance, for equal
SESR (F, = F) and rational scale-ratio d,/dp, the singular-
continuous modal wavenumbers are still given by (18), but now
with [41]

leN,meZ:|cos(Jm)| > 1/V2 21)

where .J,,,; is defined in (19). Also in this case the singular-
continuous spectrum is characterized by multifractal behavior
(see [26] and [41] for details).

5) Rudin-Shapiro Sequences: Unlike the previous examples,
Rudin-Shapiro (RS) sequences cannot be generated directly via
two-symbol substitution rules, but rather require a two-step pro-
cedure (see [37], [38] for details). One first applies the four-
symbol substitution rule, defined on the alphabet {a, b, ¢, d},

&(a) = ab,&(b) = ac,&(c) = db,&(d) = de (22)
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followed by a final projection onto the usual two-symbol al-
phabet {a, b}

p(a) = a,(b) = a,¢(c) = b, p(d) =b.

It can be shown that the SFR is x = 1 [37], [38], and that
the corresponding scattering spectral signatures are character-
ized by trivial BM only, superposed onto an absolutely-contin-
uous background. If trivial BM are suppressed (e.g., by choosing
d, = dp and F, = —F}), the spectrum becomes purely abso-
lutely-continuous (no localized peaks).

(23)

C. General Substitution Rules

The examples illustrated so far are representative of the
BM and diffused spectra encountered in the study of aperiodic
arrays based on general two-symbol substitution rules. The
reader is referred to [28], [29] for a full formal account, as well
as a comprehensive classification of the BM spectra. Here, we
limit ourselves to emphasizing that the same substitution rule
can yield fundamentally different types of BM spectra, de-
pending on the scale-ratio d,, /d;, (see, e.g., the PD sequences in
Section III-B.4). In particular, the rational/irrational character
of the scale-ratio plays a key role. This raises some important
conceptual issues concerning the actual observability of such
distinct behaviors in finite-precision computational models or
experimental scenarios limited by fabrication tolerances. The
reader is referred to [42] (and the references therein) for a
theoretical approach. In our investigation, we used an intuitive
pragmatic approach to construct effectively irrational values of
the scale-ratio, based on a rational approximation p/q, with
p,q € N sufficiently large so as to exclude any constructive
interference within the spectral range of interest.

IV. PARAMETRIC STUDIES

In this Section, we present a series of numerical simulations in
order to flesh out some of the concepts illustrated in Section III,
and to understand the role of the various parameters and degrees
of freedom. In all simulations, strip widths and inter-element
spacings are chosen within the calibrated ranges of validity of
the approximate PO model (see, e.g., [33]). The EM observable
of interest is the bistatic differential radar cross-section (RCS)
(scaled to the free-space wavelength)

D (8) = koRo|E3 (ko sin 67, ko sin 6)]2. (24)

Concerning the strip constitutive properties, an idealized model
is assumed in which the reflection coefficients I',, ; are indepen-
dent of the incidence angle; this includes the cases I'y , = —1,
I'yp = 1,and I'yp, = 0, corresponding to perfectly electric
conducting (PEC), perfectly magnetic conducting (PMC), and
perfectly transparent strip (lacuna), respectively. No attempt is
made at this stage to address physical feasibility issues.

A. Substitution Rules and Scale-Ratio

As a first example, in order to illustrate the role played by the
substitution rule, Fig. 2 displays the RCS response for oblique
(6" = 15°) plane-wave incidence of several representative ape-
riodic array configurations, with N = 100 identical (I, =
Iy, = 1.2\g) PEC (I'y = I, = —1) strips, with d, = 2.5)¢
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Fig. 2. Geometry as in Fig. 1. RCS responses, for oblique (#* = 15°) plane-
wave incidence incidence, of various arrays made of N' = 100 identical PEC
(e = I'y = —1) strip elements with I, = I, = 1.2XA0, and do = 2.5A0.
(a) Periodic (d, = d,); (b) Fibonacci; (c) TM; (d) PD; (e) RS; (f) Bernoulli
random [prob(a) = prob(b) = 0.5]. For all aperiodic arrays, d, = 1.6d,
is assumed. In (a)—(c), as a reference, the dominant BM peaks are labeled ac-
cording to the asymptotic (infinite-array) predictions.

and identical scale-ratio. The arrays are generated iterating the
substitution rules in Sections III-B.2-III-B.5, namely, Fibonacci
[Fig. 2(b)], TM [Fig. 2(c)], PD [Fig. 2(d)], and RS [Fig. 2(e)],
using an “a” seed and taking the first 100 symbols. In these ex-
amples, in order to emphasize the possible nontrivial BM spec-
tral features, an effectively irrational scale-ratio was chosen (re-
call the discussion in Section III-C); it was verified that a value
dy/d, = 5/4 = 1.6 was sufficient to drive the higher-order
trivial BM peaks outside the visible range |k.| < ko. Also
displayed, as references examples, are the RCS responses of a
periodic (d, = dp) array [Fig. 2(a)] and of a Bernoulli-type
random array with prob(a) = prob(b) = 0.5 and d;, = 1.6d,
[Fig. 2(f)]. Sharply localized peaks, with various structures and
amplitudes [also modulated by the SESR in (2)], are clearly
visible in all plots. More specifically, for the chosen parameter
configuration, Fig. 2(b) is representative of the quasiperiodic
BM spectrum in (12), whose complex structure (remarkably dif-
ferent from the periodic case) is clearly observable. As a ref-
erence, the labeling scheme in Fig. 2(b) associates some of the
dominant peaks with the corresponding lowest-order (m, n)-in-
dexed BM in (12). Conversely, the RCS response in Fig. 2(c)
should be interpreted in terms of the superposition of a dom-
inant periodic-like BM spectrum [cf. (14)] superposed onto a
diffused singular-continuous spectrum [cf. (15), (16)]. Finally,
the RCS responses in Fig. 2(d)—(f) turn out to exhibit only one
strong peak (trivial specular-reflection BM) superposed onto
background spectra with complicated structures [singular-con-
tinuous for the PD array in Fig. 2(d), and absolutely-contin-
uous for the RS and random arrays in Fig. 2(e) and (f)]. Here
and henceforth, the visual similarities between the responses
of the fully-deterministic RS sequences and the Bernoulli-type
random sequences are not coincidental. Indeed, it can be shown
that the two sequences share the same spectral signatures [36].

To highlight the role of the scale-ratio, Fig. 3 displays the RCS
responses of the same RS and random arrays in Fig. 2(e) and
(f), but this time with an integer scale-ratio d;/d, = 2 which
now renders the trivial BM spectrum in (8) clearly observable in
the visible spectral range, superposed onto an absolutely-contin-
uous spectral background. A similar trivial BM signature can be
observed for the PD array in Fig. 4, but this time superposed onto
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Fig. 3. As in Fig. 2, but with d, = 2d,. (a) RS and (b) Bernoulli random
[prob(a) = prob(b) = 0.5]. As a reference, the dominant BM peaks are
labeled according to the asymptotic (infinite-array) predictions in (8).
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Fig. 4. As in Fig. 3, but for PD array.
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a singular-continuous background. The same PD array, with a
regular inter-element spacing d, = d; but non-identical strips
(e.g., 'y # I'y), exhibits a completely different RCS response,
representative of the infinite-periodic BM spectrum in (20). An
example is shown in Fig. 5, where at least three [-orders are
observable.

B. Single-Element Scattering Response

As already observed, the BM wavenumbers depend on the
substitution matrix and possibly on the scale-ratio. However,
the modal excitation amplitudes also depend on the SESR in
(2), which can be controlled by acting on the strip widths (/4 5)
and/or their constitutive properties (embedded in I'y, ;). In this
connection, analytic knowledge of the BM amplitudes can sug-
gest particularly interesting parameter tunings, such the one in
(10) which yields strong suppression of the trivial BM spectrum.

Within the calibrated parametric range of validity of our
PO model, the strip width cannot be too small (in view of the
Kirchhoff approximation) or too large (in view of the neglected
inter-element coupling). In our simulations, values I, 5 > 1.2
are considered, always ensuring edge-to-edge inter-element
distances > A¢/2. Within this parametric ranges, changing the
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Fig. 5. As in Fig. 4 (PD array), but with d, = d, and non-identical PEC
(I'y = —1) and PMC (I', = 1) strip elements. As a reference, some of the
dominant trivial BM peaks are labeled according to the asymptotic (infinite-
array) predictions in (20).
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Fig. 6. Asin Fig. 2(b) (Fibonacci array), but with d, = 3o and various strip
widths. (@) I, =1, = 1.2X0; (b) 1, = 2X0, 1, = 1.2X0;(c) 1. = 1.2X0,1, =
200; (@) 1, = 1, = 2).

strip widths typically affects the RCS response in terms of a
moderate re-shaping of the BM amplitudes, as shown in Fig. 6
for the Fibonacci case.

More suggestive may appear acting on the constitutive
properties of the strips. Besides the rather trivial device of con-
structing lacunary arrays by setting to zero one of the reflection
coefficients [see the example in Fig. 7 pertaining to RS and
random arrays exhibiting trivial BM spectra similar to those
in Fig. 3], such interest in motivated by the recent advances
in the practical synthesis of artificial impedance surfaces (see,
e.g., [43]) which are expected to provide new perspectives and
additional degrees of freedom in the choice of I'; ;. As an
illustrative example, Fig. 8(a) shows the RCS response of a TM
array made of PEC (I', = —1) and ideal PMC (I';, = 1) strips
with equal inter-element spacing d, = dp = 2.5\, which [re-
calling (10)] is characterized by a purely singular-continuous
spectrum. A similar, purely singular-continuous, response can
be obtained by properly tuning the parameters of a PD array,
as shown in Fig. 8(b). These responses look very complicated,
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Fig. 9. As in Fig. 7, but with PEC (I', = —1) and PMC (I', = 1) strip
elements.

and the limited spectral resolution available prevents full ob-
servation of the underlying scale richness (see the discussion
in Section IV.C below). As a further example, Fig. 9 shows the
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Fig. 10. Fibonacci array, as in Fig. 2(b). RCS response averaged over 1000
realizations (randomly chosen from a 10°-element sequence). (a) N = 5; (b)
N =10;(c) N = 20;(d) N = 50;(e) N = 100; (f) N = 200. As a ref-
erence, the asymptotic (infinite-array) predictions in (12) for the quasiperiodic
BM spectrum are displayed as dashed grids (for the sake of readability, only the
orders |[m/|, |n| < 4 are shown).

RCS responses of RS and random arrays made of evenly-spaced
PEC/PMC strips, which [in view of (10)] exhibit purely abso-
lutely-continuous spectra. Accordingly, these responses turn
out to be devoid of any distinct localized footprints, and are
essentially representative of the sinc-type SESR in (2).

C. Array Size

As illustrated in Section III, in the infinite-array limit, the
scattering signatures of arrays based on substitutional sequences
are essentially dictated by the substitution matrix in (5), and
hence by the global symbol proportions rather than the actual
local ordering. For truncated, relatively large-size arrays, like
those in the numerical examples presented so far, one expects
the above results to still be capable of predicting the positions
of the dominant spectral peaks. However, in view of the limited
(~ 1/N) spectral resolution, and the typically dense character
of certain BM spectra [see, e.g., (12) and (20)], such peaks (as
well as the background structure) may actually be representative
of modal clusters. Conversely, for relatively small-size arrays,
one intuitively expects the local symbol ordering to play a more
significant role.

In [21], we applied the results in Section III.B.2 to the
study of large truncated Fibonacci-type arrays, via the use of
generalized Poisson summation and via geometrical-diffrac-
tion-theory asymptotic parameterizations. Here, we address
the study of the global versus local ordering effects via a
statistical analysis of the RCS response in (24) for different
array sizes. For a given substitution rule, the statistical pop-
ulation is constructed by generating a 10°-element sequence
(with “a” seed) and by randomly extracting 1000 different
realizations of a given size. As a first example, Fig. 10 shows
the average RCS response (denoted as (D)) for a Fibonacci
array of size N = 5,10, 20, 50, 100, and 200. As a reference,
the asymptotic (infinite-array) predictions in (12) for the purely
quasiperiodic BM spectrum are displayed as dashed grids (for
the sake of readability, only the orders ||, |n| < 4 are shown).
As expected, the spectral resolution increases with the array
size, displaying a progressively finer structure in progressively
closer agreement with the asymptotic predictions. Qualitatively
similar behaviors are observed for the case of a PD array (see
Fig. 11) characterized by an infinite-periodic BM spectrum
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Fig. 12. As in Fig. 10, but for lacunary (I', = —1,T%, = 0) RS array with
d, = d, = 2.5)X0. As areference, the asymptotic (infinite-array) predictions
in (8) for the trivial BM spectrum are displayed as dashed grids.

and a singular-continuous background, and for a RS array
(see Fig. 12) characterized by a trivial BM spectrum and an
absolutely-continuous background.

We also studied the (normalized) standard deviation

V(D%(9) - (Dx(6))”
maXxg DN(Q)

o N( = (25)
which quantifies the local-ordering-induced fluctuations in the
RCS responses of different realizations. Intuitively, such effects
are expected to be significant for relatively small-size arrays
(where the local ordering plays a major role), and to become
negligible for large-size arrays (where the response is dominated
by the global symbol proportions). Fig. 13 shows the (maximum
over ) normalized standard deviation in (25), as a function of
the array size IV, for the examples in Figs. 10-12. As expected,
the standard deviation decreases monotonically with the array
size. For the Fibonacci case, one observes a decrease of one
order of magnitude, from 65 = 0.15 to 299 = 0.012. The
slightly larger values observed for the other two examples (PD
and RS) can be attributed to the presence of diffused spectral
backgrounds.

The effects of the array-size in the diffused spectral con-
stituents are less intuitive. The reader is referred to [22] for
a study of the truncation effects in RS arrays (exhibiting
absolutely-continuous spectral backgrounds) via numerical
exploration of typical array-oriented observables such as di-
rectivity and sidelobe level. More complicated and richer in
structure are the signatures associated with the singular-con-
tinuous background, typically characterized by multifractal
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Fig. 14. Graphic illustration of the multifractal scaling properties of singular-
continuous spectral constituents pertaining to a TM array configuration. Com-
plex plots (real versus imaginary part) of the sequence of complex scattered
fields associated with various structure sizes, 5 = 0, E§, ..., EY,, for various
values of N. Parameters as in Fig. 7(a), with reference to the modal wavenumber
k212 in (15) with scaling exponent a(k,12) = log3/log2. (a) N = 2;
by N =8;(c) N =32;(d) N = 128;(e) N = 512; (f) N = 2048. As
N increases, the re@ulnng curves approach a snowflake-type fractal curve with
dimension Dy = log4/log3 ~ 1.262.
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scaling [25]-[27], [40], [41]. A simple way to graphically
visualize such complex scaling properties is to plot, in the
complex plane, the sequence of complex scattered fields as-
sociated with various structure sizes, 5§ = 0, Ef,..., E},
successively, and to join E; with E;,,, n = 0,1,...,N.
It can be shown that, for a spectral wavenumber k, corre-
sponding to a singular- continuous constituent with scaling
exponent «(k,), the resulting plot tends (as N — o0) to a
fractal curve with fractal dimension [25] Dr = 2/a(k,). As
an illustration, Fig. 14 shows different iterations of such plots
pertaining to the TM parameter configuration in Fig. 7(a), with
reference to the modal wavenumber k.12 in (15), with scaling
exponent a(k,12) = log3/log2. The resulting curves are
observed to approach a typical snowflake fractal curve with
dimension Dy = log4/log3 =~ 1.262. The reader is referred
to [41], where multiresolution wavelet processing has been
successfully applied, within the context of crystallography, to
extract the scaling footprints pertaining to singular-continuous
constituents in TM and PD geometries.
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D. Remarks

The examples presented so far illustrate, an an introductory
level, the wealth of scattering signatures exhibited by the
seemingly-simple 1-D substitutional-sequence-based scenario
considered, which spans the “gray-zone” from quasiperiodic to
quasirandom. The distinctive characteristics of these signatures
stem from the structure of the BM constituents and the diffused
(singular-continuous and absolutely-continuous) background.
It is worth pointing out that there are several examples of
completely different geometries (e.g., periodic, TM, PD, RS)
which, under appropriate parameter configurations, can give
rise to hardly distinguishable BM signatures. In these cases,
a key role is assumed by the (possible) diffused background,
which can hide very complicated structures and surprising char-
acteristics (see, e.g., [36]). From the above results, one is also
led to the somehow counterintuitive considerations that, under
appropriate conditions, deterministic geometries [e.g., the RS
in Fig. 9(a)] can give rise to flat noise-like scattering signatures
(typical of random disorder), whereas random geometries [e.g.,
the Bernoulli-type in Figs. 3(b) and 7(b)] can exhibit sharp BM
signatures (typical of periodic order).

V. CONCLUSION

In this paper, we have addressed the study of plane-wave scat-
tering from rather general 1-D aperiodically-ordered strip-array
geometries based on two-symbol substitution rules. Within the
framework of Kirchhoff PO approximation, it has been shown
that, despite the rather general and complex character of the
geometries involved, analytic parameterization and physical in-
terpretation of the relevant aperiodic-order-induced wave phe-
nomenologies can be addressed by exploiting theoretical results
from solid-state physics and discrete geometry.

The results illustrated, via several representative examples,
indicate that a wealth of scattering signatures, with (some-
time counter-intuitive) spectral characteristics ranging from
quasiperiodic to quasirandom, can be obtained via judicious
exploitation of the additional geometrical and/or constitutive
degrees of freedom available in aperiodic configurations. In
particular, the role played by the substitution rule (and, specifi-
cally, the arithmetical properties of the associated substitution
matrix), the scale-ratio, the SESR, and the array size, has
been highlighted. From the application viewpoint, the richness
of the radiation/scattering signatures of more orderly (e.g.,
quasiperiodic) configurations could be exploited for synthesis
and control of peculiar EM responses of potential interest for
radio-frequency identification. On the other hand, the more
random looking responses (e.g., RS [22]) could be exploited
for suppression of specular reflection (e.g., simulated rough
surfaces [44] and “virtual shaping” [45]), of potential interest
for radar countermeasures. Accordingly, we are planning cur-
rent and future investigations of more realistic models, with the
development of full-wave tools which account for the inter-ele-
ment coupling as well as for the presence of well-characterized
artificial surfaces (and thus angle- and frequency-dependent
reflection coefficients). Also of interest, is a sensitivity analysis
of the scattering signatures (e.g., with respect to scale-ratio,
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strip-width, etc.) as well as the study of phenomena like en-
hanced backscattering or enhanced normal scattering, typical
of disordered structures.
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