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A W~ener Integral approach to mmpute the scalar potential of t r a m  
verse electromagnetic modes in complex (multimnductor) transmission 
1in.s and its application to characteristic impedance mmputation via st& 
tionary (variational) formulas are presented. The mmputation of the 
involved W~ener functional integrals is anomplished by means of Monte 
Carlo methods 

1 - INTRODUCTION. 

The analysis of transverse electromagnetic (henceforth TEM) modes plays an 
important role in uniform transmission lines theory '. It is well known (Collin, 
1960) that the fields can be found from a (static) scalar potential, which is 
a solution of Laplace equation in the transverse plane. Although distributed- 
circuit theory (Collin, 1960) allows the study of excitation and propagation of 
current and voltage waves on a transmission line without the need to know 
field distribution in detail, this latter is essential for evaluating the fundamen- 
tal distributed-circuit parameters (e.g. characteristic impedance). Moreover, 
knowledge of the detailed field distribution is needed in a number of applica- 
tions, such as power microwave systems (power handling, dielectric breakdown, 
heating, choice of materials). 

However, the scalar potential problem can be analytically solved only in a few 
simple (separable) geometries. Whenever the transverse geometry is complex, 
one must resort to numerical methods, such as Method of Moments (henceforth 
MOM) (Harrington, 1968) or Finite Elements Method (henceforth FEM) (Sil- 
vester and Ferrari, 1990). These techniques are relatively expensive in terms of 
memory and CPU requirements since they ultimately reduce to the inversion 
of a large matrix. If one is interested only in characteristic impedance compu- 
tation, a possible approach can be based on conformal tmnsformotions (Collin, 
1960), yielding in some cases simple analytical approximations. But this tech- 
nique is not completely applicable in arbitrary geometries, and it often requires 
tedious calculations and/or numerical approaches for the inversion. 

'Moreover s gum-TEM approximstion ia also useful to study the fundamental mode of 
inhomogeneous linea in the low-frequency limit (Collin, 1960). 
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438 L. CAPPETTA ET AL. 

In particularly complex geometries, a good tradwff between computational 
burden and accuracy can be provided by combining an efficient numerical tech- 
nique to compute the scalar potential and a variational method (Collin, 1960) 
for impedance evaluation. This ensures a second order error on the impedance 
for the field distribution correct to only the first order. 

Recently we introduced in electromagnetic problems a new class of numerical 
methods based on Functional Integration and Monte Carlo method (Galdi et 
al., 1997). These methods represent an attractive alternative to the usual ones 
in terms of power and computational budget. 

In this paper we present an algorithm for computing the scalar potential 
and characteristic impedance of the dominant (TEM) mode in multiconductor 
transmission lines of general cross-section geometry, based on Wiener Integra- 
tion (henceforth WI) and numerically implemented by means of Monte Carlo 
methods. The paper is organized as follows. In Section 2 we review the principal 
features of TEM modes and present a variational formula for the characteristic 
impedance. In Section 3 we introduce the M solution for the scalar potential 
and in Section 4 we discuss its numerical (Monte Carlo) implementation. In 
Section 5 we outline a comparison between the proposed method and the stan- 
dard ones and in Section 6 we present some representative results. Conclusions 
follow under Section 7. The Wiener Integral concept is heuristically presented 
in the Appendix. 

2 - T E M  MODES IN TRANSMISSION LINES. 
A z-uniform transmission line is considered with arbitrary (multiply con- 

nected) cross-section delimited by perfect conductors (and otherwise partially 
open) filled by an uniform dielectric medium (vacuum). A time harmonic 
exp(jwt) depencence will be assumed and dropped. The fundamental mode 
(zero cut-off freq.) in such a structure is TEM (E, = H, = 0). The fields can 
be related to a scalar potential (Collin, 1960): 

{ b(z ,  y, z )  = -VcO(z, y) eFjbz, 
f i ( z , ~ , z )  = FZ;'C, x VtO(z,y) e i j k o z ,  

(1) 

where ko = ~ ( e o p o ) ' / ~ ,  Zo = ( p ~ / r o ) ' / ~ ,  the - (+) sign refers to forward 
(backward) propagation waves, and the scalar potential O satisfies the Laplace 
equation with suitable boundary conditions: 

{ y) = 0 in D, 
O = costant on aD. (2) 

It can be easily shown (Collin, 1960) that a non-trivial solution is always 
possible when two or more conductors are resent and the potential does not B take equal (constant) values on all of them . 

O(z,y)=V, ( z , y ) €a R ,  i = l ,  ..., m, 

al, = c=, a Q  , aDi nav, = 0 i # k. (3) 

For two conductors there is an unique voltage-current wave associated with 
the electromagnetic field (Collin, 1960): 

'For opm atructurea one ha. to consider a m&ority-atinfinity boundary condition ea well. 
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WIENER INTEGRAL MONTE CARL0 APPROACH 439 

Vo being the (static) potential difference between the conductors and lo the 
current at  z = 0, related by the characteristic impedance (Collin, 1960): 

Thus knowledge of the (static) capacitance per unit lenght C alone suffices 
to determine the characteristic impedance. A variational expression for the 
capacitance and, hence, for the characteristic impedance, can be obtained for a 
two-conductor line in the form (Collin, 1960): 

Generalization to multiconductor lines is straightforward (Pozar, 1993). It is 
stressed that the above formula is particularly advantageous whenever approx- 
imate (e.g. numerical) solution for the scalar potential are available. 

3 - WIENER INTEGRALS AND LAPLACE 
EQUATION. 
In this Section the connection is explored among Wiener processes (see 

Appendix), functional integrals and Dirichlet problems for Laplace equation. 
This deep connection, well-established in probability theory (Ventsel, 1983), 
has not been yet properly exploited in electromagnetics problems. Following 
(Ventsel, 1983). the solution of the Dirichlet problem (2)-(3) can be expressed 
as: 

@(X,Y) = E c , ~ )  [f[w&), wy(~) l l .  (7) 

where E(=,") represents a Wiener Integral, viz., an ezpectation value with respect 
to the probability measure associated to the Wiener processes (w,, wy)  starting 
at (2, y) at  time t = 0 (see Appendix), and r is the first ezit time from D 
( ~ e i t s e i ,  1983): 

r = inf {t : (wz(t),wy(t)) $2 2)). 
For unbounded domains D, typical of open transmission lines, and regularity- 
at-infinity conditions, a WI solution is possible upon introducing a suitable 
absorbing (O = 0) boundary surrounding the structure at  sufficient distance 
from it. 
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440 L. CAPPETTA ET AL. 

4 - MONTE CARL0 IMPLEMENTATION 

The Wiener Integral (7) can be computed without any restriction on the trans- 
verse geometry complexity using Monte Carlo methods (Sobol, 1975),(Kloeden 
and Platen, 1991). The underlying idea can be explained as follows. First in- 
troduced is a time discretization with (e.g. constant) step size A. Next the 
classical time discrete Euler approzimation is resorted to (Kloeden and Platen, 
1991) for the Wiener processes involved : 

wz(tk+d = wz(tk) + 4 Awrk , ~ ~ ( 0 )  = 2, 

wv(trs+d = wy(tli) + \/Z Awyrs , ~ ~ ( 0 )  = Y, (10) 

where tk+l - tk = A, and Aw.k,Awys are independent gaussian distributed 
random variables with means and variances: 

E(Aw2t) = E(AwVk) = 0 , ~ [ ( A w = k ) ~ ]  = ~ [ ( ~ w ~ r s ) ~ ]  = A- (11) 

The process is evolved, using equations (10) and (11). until the time r+ , 
immediately after reaching the boundary OD, viz.: 

(w.(T+ -A),wV(.+ -A) )  E D and (wz(r+),wy(7+)) 4 D. (12) 

The ezit point (z,, ye) can be computed solving the following system: 

where hin&) is the linear interpolation between two process samples : 
(13) 

and hm(z) defines (locally) the boundary OD. 
Following the classical Monte Carlo method (Sobol, 1975), the Wiener In- 

tegral (expectation value) (7) can be computed iterating the above described 
procedure and evaluating the arithmetical means: 

where (zb, y:) denotes the j-th realization of the random variables (z., ye). 
Hence : 

Obviously, for any finite A and M the result will be affected by i) a systematic 
error due to the effect of discretization (average over piecewise linear paths 
instead of general paths), for which (Kloeden and Platen, 1991): 
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WIENER INTEGRAL MONTE CARL0 APPROACH 441 

and i i)  a statistical error, which in view of the Central Limit theorem is asymp- 
totically gaussian, with zero average and r.m.8 deviation (Sobol, 1975),(Kloeden 
and Platen, 1991): 

which depends (weakly) on A, as well as (strongly) on M 
By computing the second moment : 

one can estimate the confidence interval of the result (Sobol, 1975): 

(1) -112 (2) (1) 1/2, 
&M,A = ~ M , A  * aM ~ M , A  - ~ M , A  (20) 

where a depends on the sought confidence level. 

5 - COMPARISON WITH OTHER METHODS. 

In this Section a comparison is outlined between the proposed Wiener Inte- 
gral Monte Carlo (henceforth WIMC) method and other alternative standard 
techniques like MOM and FEM to compute the scalar potential, in terms of 
computational budget. The main differences between WIMC and MOMIFEM 
can be summarized as follows: 

0 WIMC has very mild memory requirements, irrespective of the complexity 
and size of the problem. In contrast, MOM and FEM require the storage 
of a large (possibly block-Toeplitz) matrix. 

0 WIMC does not require any meshing algorithm. 

0 WIMC is intrinsecally parallelizable. 

0 Tight accuracy bounds are easily obtained. 

On the other hand, the main drawback of WIMC is related to the relatively 
slow convergency rate (or M-' /~) .  Thus, WIMC should be seriously considered 
for complicated geometries i.e. , whenever fast (parallel) computing engine4 and 
relatively little memory are available. 

Moreover, as remarked in previous Sections, WIMC can be used as an aux- 
ilary tool for characteristic impedance computation. In this connection one 
could evaluate the scalar ~otential  on a suitable soatial lattice and then resort 
to suitable interpolators (e.g. polinomial, splines (Press et al., 1992)) to obtain 
the fields all over the domain D. A variational formula like eq. (6) can provide 
a very good approximation with a restricted number of potential samples. We 
remark that WIMC accuracy on each potential sample does not depend on the 
spatial discretization and the computation of the needed potential samples can 
be easily distributed among parallel processors, 
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442 L. CAPPETTA ET AL. 

6 - COMPUTATIONAL RESULTS. 
As a test of the accuracy of the proposed method, fint to be considered is a 

circular coaxial cable (Fig. la), for which the exact analytical solution is known 
(Collin, 1960). In order to obtain an indicative test, we ignored the circular 
symmetry of the structure, and computed the scalar potential (in one quadrant 
of the structure only) on 100 points arranged on a 10 x 10 grid. We applied 
the variational formula (6) to compute the characteristic impedance, using a 
bicubic interpolation (Press et al., 1992) of the potential samples. In Fig. l b  
the exact and WIMC normalized characteristic impedance versus radius-ratio 
are compared. The computed erron are displayed in Fig. 15 and were always 
below 0.3%. 

As a further step in complication, in Fig. 2a a structure is considered with 
a stadium-shaped outer conductor and an off-centered regular hexagonal inner 
one. In this case we computed the scalar potential a t  200 points arranged on a 
20 x 10 grid covering one half of the structure, because of its symmetry. Fig. 2b 
shows the WIMC-computed normalized characteristic impedance (obtained via 
formula (6) with bicubic interpolation) as a function of the off-center parameter: 

A typical potential contour-plot is shown in Fig. 2c. 
Finally we considered a shielded coupled stripline with coplanar strips (Fig. 

3 4 .  The potential was computed at 100 points arranged in 10 x 10 grid covering 
one quadrant of the geometry, for symmetry, and a hicubic interpolation has 
been used to compute characteristic impedance, generalizing eq. (6) to three- 
conductor lines (Pozar, 1993). The WIMCcomputed normalized characteristic 
impedance for even (V, = V1) and odd (Vl = -Vz) modes as a function of 
normalized strips distance is shown in Fig. 3b. Note that both characteris- 
tic impedances above are measured (defined) between one strip and the outer 
(ground) shield. Typical potential countour-plots are displayed in Fig.s 3c-3d 

In order to obtain all graphs above, a typical number M N los paths with 
an adaptive time-step3 have been used. The typical average confidence interval 
halfwidth on potential (eq. (20), u = 3) was always less than 1%. 

7 - CONCLUSIONS. 
We introduced a new method for computing the scalar potential and charac- 

teristic impedance of a TEM mode in complex (multiconductors) transmission 
lines based on Wiener Integral and Monte Carlo method. Application to a 
number of structures has been presented. The method seems attractive by com- 
parison with standard techniques in terms of computational budget and ease. 

3A - lo-' close to the eonduetors (where one has to solve eq. (13)). A - 10W3 elsewhere. 
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WIENER INTEGRAL MONTE CARL0 APPROACH 

FIGURE l o  - Coaxial circular transmission line. 
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a l b  

FIGURE 16 - Exact and WlMC normalized characteristic impedance vs. 016. 
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L. CAPPETTA ET AL. 

FIGURE 

a l b  

Jc  - % error on characteristic impedance vs. a/b 

FIGURE 2a - Stadium shaped transmission line with off-centered hexagonal 
inner conductor. 
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WIENER INTEGRAL MONTE CARL0 APPROACH 

FIGURE 2b - WIMC normalized characteristic impedance vs. off-center 
parameter y = (zOt11 /(a + b - r). 
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FIGURE 2c - Potential contour-plot: 
y = 0 . 4 ,  a = b = l  r = 0 . 6 ,  V , = l  V 2 = 0  
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L. CAPPETTA ET AL. 

a 
4 * 

FIGURE 30 - shielded coupled striplines with coplanar strips 

FIGURE 36 - WlMC normalized characteristic impedance for even (V,  = V2) 
and odd (VI = -Vz) modes vs. normalized strips distance S/b .  
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WIENER INTEGRAL MONTE CARL0 APPROACH 447 

FIGURE 3c - Potential contour-plot for even mode: 
V , = V 2 = 1 ,  V 3 = 0 ,  a = 2 ,  b = l  W = 0 . 4 ,  T = 0 . 1  S /b=0 .4 .  

FIGURE 3d - Potential contour-plot for odd mode: 
v ~ = - V > = l ,  V 3 = 0 ,  a = 2 ,  b = l  W = 0 . 4 ,  T = 0 . 1  S / b = 0 . 4 .  
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APPENDIX - ABOUT WIENER INTEGRALS. 
We define a standard (scalar) Wiener process w = {w(t), t 2 0) originating 

from zo a t  t = 0 as a gaussian process with independent increments such that 
(Kloeden and Platen, 1991),(Gardiner, 1983): 

w(0) = 20, E[w(t) - w(s)] = 0, uar[w(t) - w(s)] = 2D(t - s), t > s. (Al) 

where D is the so-called diflwion coeficient '. 
We can also consider n-dimensional Wiener processes, whose components 

{wl, w2, ..., w,) are independent scalar Wiener processes with respect to a 
common family of u-algebras (Gardiner, 1983). It can be shown that the 
sample paths of a Wiener procens are continuous but nowhere differentiable 
functions of time (Gardiner, 1983). The transition probability density: 

satisfies the Fokker-Planck equation (Gardiner, 1983): 

Wiener was able to define a probability measure associated to the process 
defined above and demonstrated that for a wide class of regular functionals there 
exists an integral over it (Gelfand and Yaglom, 1960), (Schulman, 1981). Such 
an integral admits an immediate interpretation as an average of the functional 
over the Wiener paths (Schulman, 1981). 

'Note that in Sectiom 3-4 we mferena to Wiener p r o m s  with diffusion coefficient D = 1. 
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