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Ray-Chaotic Footprints in Deterministic Wave
Dynamics: A Test Model With Coupled Floquet-Type
and Ducted-Type Mode Characteristics
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Abstract—Ray chaos, manifested by the exponential divergence
of trajectories in an originally thin ray bundle, can occur even
in linear electromagnetic propagation environments, due to the
inherent nonlinearity of ray-tracing maps. In this paper, we present
a novel (two-dimensional) test example of such an environment
which embodies intimately coupled refractive wave-trapping and
periodicity-induced multiple scattering phenomenologies, and
which is amenable to explicit full-wave analysis. Though strictly
nonchaotic, it is demonstrated that under appropriate conditions
which are inferred from a comprehensive parametric database
generated via the above-noted rigorous reference solution, the
high-frequency wave dynamics exhibits trends toward irregu-
larity and other peculiar characteristics; these features can be
interpreted as “ray-chaotic footprints,” and they are usually not
observed in geometries characterized by ‘“regular” ray behavior.
In this connection, known analogies from other disciplines (par-
ticularly quantum physics) are briefly reviewed and related to the
proposed test configuration. Moreover, theoretical implications
and open issues are discussed, and potential applications are
conjectured.

Index Terms—Ducted-type modes, Floquet theory, ray chaos.

I. INTRODUCTION

IRST envisaged, in connection with celestial mechanics,

by the French mathematician Poincaré [1] in the late nine-
teenth century, and subsequently brought to formal completion
by the Russian school (see, e.g., [2]-[5]), deterministic chaos
has gradually emerged as an ubiquitous natural phenomenon
with a wealth of pervasive and intriguing theoretical implica-
tions. During the last few decades, its relevance in all fields
of applied science and engineering has been recognized (see,
e.g., [6]), as evidenced by the steadily increasing topical lit-
erature (see, e.g., the bibliography database maintained by the
Nonlinear Dynamics Group at the Johannes Gutenberg Univer-
sity of Mainz, Germany [7]). In essence, deterministic chaos
is manifested by exponentially increasing separation between
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originally nearby phase-space trajectories that describe the evo-
lution of an even feebly nonlinear dynamical system with suffi-
ciently many degrees of freedom; this leads to long-time algo-
rithmic unpredictability and random-like behavior. The reader is
referred to classic textbooks and review articles such as [8]—[13]
for introduction and review concerning this subject area.

Electromagnetic (EM) chaos has so far elicited relatively
little attention within the applied EM community (see [14] for a
compact review). Conceivable EM chaotic scenarios are those
where chaos stems from circuit nonlinearities (e.g., an antenna,
or a transmission line, loaded by a Chua double-scroll circuit
[15]) or from nonlinear material constitutive properties [16],
as well as those where chaos can occur in /inear media due to
nonlinear coupling between mechanical and EM degrees of
freedom (e.g., in Fabry—Perot resonators with (freely swinging,
heavy) pendular mirrors [17]). However, much more intriguing
is the class of EM boundary value problems (BVPs) that tend
toward ray chaos (i.e., eventual exponentially diverging sen-
sitivity to initial conditions) in smoothly varying linear EM
propagation environments. In such environments, ray-chaotic
trends can be induced by certain geometrical features, e.g.,
concave portions of a boundary that can support very many
multiple reflections, which are reinforced through appropriate
refractive (focusing) confinement in the ambient medium. In this
connection, itis instructive to examine formal analogies between
ray optics and classical particle mechanics like the Sinai [18]
(rectangular cavity with circular intrusion) or Bunimovich [19]
(stadium-shaped) chaotic “billiards” in internal BVPs, or the
“n-disk pinball” (n > 3) scenarios in external BVPs [20], [21].
Also relevant are perspectives originated within the framework
of quantum physics, the so-called wave/quantum chaology,
pertaining to classical versus quantum chaos (see [22]-[25] for a
review). Critical in the assessment of ray chaos in deterministic
linear smoothly configured propagation environments is the
inherent nonlinearity of ray-tracing maps [governed by the
nonlinear eikonal equation (V)2 = n?, where ¢ is the ray
phase and n is the (inhomogeneous) refractive index] which
evolve from successive ray-impact points. This introduces into
the high-frequency (HF) asymptotic wave field tracking of
solutions of a linear wave equation via uniformized ray theory,
which does not exhibit inherent exponential sensitivity to initial
conditions for nonvanishing wavelengths, an artifact attributable
to the zero-wavelength-limit model with its nonlinear properties.
At any small but finite wavelength, the wavelength sets a scale
beyond which “complexity” cannot be further resolved. There is
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substantiated evidence that ray-chaotically inclined BVPs in the
short (but finite) wavelength regime exhibit “ray-chaotic foot-
prints” in irregular-appearing wave-dynamical signatures which
differ substantially from those associated with BVPs exhibiting
“regular” ray behavior. Thus, the onset of ray chaos in ray-chaot-
ically inclined BVPs is an incisive diagnostic indicator of the
need to look for alternative modeling of the phenomenology, just
as the “catastrophies” near caustics in nonuniform ray theory are
an indicator of the need for uniformization.

Ray chaos has already been demonstrated to play a key
role in certain EM applications, including characterization
of complex radar signatures [26]-[28] and of reverberating
enclosures [29], [30], as well as design of high-performance
optical devices [31], [32]. Our intent in this paper is to gain
deeper insights into the wave-physical mechanisms that govern
the tendency toward, and the onset of, ray-chaotic footprints in
ray-chaotically inclined regular-appearing EM propagation and
scattering environments. To this end, we introduce and explore
a novel synthetic complex test model configuration comprised
of a smoothly varying deterministic ambient medium above a
perfectly conducting smooth undulating boundary that estab-
lishes strong coupling between refractive wave-trapping and
Floquet-type periodicity-induced boundary-multiple-scattering
phenomenologies (“‘complexity” here should be interpreted
in its broadest sense, implying that “the whole is more than
the sum of its parts,” so that reductionistic approaches are
not applicable [33]). Remarkably, this truly complex (though
apparently simple) test environment is amenable to rigorous
explicit full-wave analysis. A numerical database constructed
from this analysis has allowed parametric studies, which serve
as reference solutions for establishing conditions that favor the
onset of ray-chaotic footprints. Known results and models from
wave chaology are introduced in EM-familiar terminology and
utilized when appropriate.

The rest of this paper is laid out as follows. Section II con-
tains the proposed model test configuration and the problem
formulation. Section III deals with its ray-chaotic behavior, and
Section IV with the proposed full-wave analysis. The compre-
hensive parametric analysis of the wave dynamics, highlighting
possible ray-chaotic footprints and validated by the numerical
database, is presented in Section V, with brief discussion of po-
tential applications. Conclusions and open issues are discussed
in Section VL.

II. PROBLEM FORMULATION

The test configuration was first explored in [34] and is illus-
trated in Fig. 1. All fields and geometries are two-dimensional
(2-D) in the y-independent (z, z) space. The structure involves
a grating consisting of a smooth perfectly conducting periodic
undulating surface with profile z = ((z), having peak-to-peak
height A and period a. The medium above the surface is a di-
electric layer of thickness h with exponentially tapered refrac-
tive index profile, which is vacuum-matched at the top interface
z = 0 and reaches its maximum value nj, at z = —h

z

2
n(z)=exp (), 7=—7logm. (1)

=0
A . 91 z
Z L]
z==h____
unit cell 1 / Hy,
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a n(z)=exp(yz/2)
z=A-h
A
z=—h >
0
/
phase-shift walls
Fig. 1. Problem schematic: A perfectly conducting undulating surface with

peak-to-peak height A and spatial period a is topped by a dielectric slab with
thickness h. The refractive index of the dielectric layer is vacuum-matched
at = = 0 and grows exponentially with depth up to a value nj, at = = —h
(see inset). Also shown are the TE-polarized plane-wave excitation (with
incidence angle 6% and y-directed electric field) and the unit cell waveguide
(with phase-shift walls) utilized in the full-wave analysis in Section I'V.

The undulating profile has the form

C(a:):i-l—%log [1+bcos<2§w>}, 0<b<l (2

which is matched to the refractive index profile in (1) through
the parameter . The implications of this choice for the con-
struction of an explicit tractable full-wave analysis, which will
serve as the reference solution for subsequent parametric numer-
ical experiments, will be made evident in Section IV. The two
parameters z and b in (2) can be related to the dielectric layer
thickness h, its maximum relative refraction index nj,, and the
undulating surface profile height A by enforcing the conditions
(see Fig. 1) ((0) = —h + A, and ((a/2) = —h. One thus ob-

tains
) ( anA/h)
(A/h) _ 1 og 1+nL(A/h)
b= 777'&/}) , Z=—-h|1l-——" 7 3)
no "+ 1 log n,

Although simple in appearance, this overall configuration may
exhibit ray-chaotic behavior over a broad range of parameters
(see Section III), accompanied by fairly complex full-wave
propagation/scattering characteristics. In comparison with the
mechanical analogy of spatially confined typical chaotic bil-
liards, the test configuration differs in two important elements:
1) its internal/external access, allowing both confined and leaky
modes as well as trapped and reflected ray fields; and ii) the
essential role of the wave-trapping refractive index profile in
providing the conditions for ray chaos (in this connection,
the ray paths for this configuration resemble the trajectories
of a heavy point-particle bouncing onto a perfectly elastic,
periodically undulating wall [35]; in our case, the exponentially
tapered refractive index plays the role of gravity, bending the
ray trajectories downward toward the undulating surface).
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III. RAY ANALYSIS
A. Ray Tracing

For an unbounded medium with refractive index profile as in
(1), integration of the ray equation [36]

d dr
% (’I"L%) = V’I’L,

yields, after some algebra, closed-form parametric equations for
the ray trajectories, shown in (5) at the bottom of the page. In
(4) and (5), s represents the ray parameter (distance along the
ray), the arctangent is defined in the interval [—m, 7], and &o_,
&o. are the (initial) direction cosines

dx dz

fozZE ; fOZZESZO

dr|?

ol =1 )

&.+&. =1 (6

s=0

The trajectory in (5) is completely specified by assigning the
starting point (zg, z¢) and the initial direction (s, o). It is
easily verified that the trajectory is a downward convex uni-
modal ([)-shaped) curve with vertical asymptotes at

¥

arctan ( L__gg)
4sgn(éoz) | m 1-&o-
— [2 arctan (, / TTee. )} .

The turning point (z;, z¢) is obtained by enforcing dz/ds = 0,
which yields

Ty = To — 44sgnﬂ(f°‘”) [% — arctan (1 / —}Iggk )]

2 =20+ 2 log (1 - &3.) .

4sgn(£01)

Tool = T + (7)

Too2 = TO —

®)

Incidentally, the Taylor series expansion (in s) of the trajectory
in (5) coincides (up to the first order for x and up to the second
order for z) with the ballistic trajectory in its gravitational bil-
liard counterpart [35].

For the configuration of Fig. 1, the ray trajectory (5) can be
used only in the dielectric layer region ((z) < z < 0. Ray
interactions with the conducting boundary ((x) in (2), as well
as those with the free-space interface at z = 0, need to be
tracked separately, using standard geometrical optics (Snell’s
laws). In our ray-tracing simulations, the algorithm is initialized
by injecting a downward-directed ray at the free-space interface
z = 0, with incidence abscissa z = z* and incidence angle #°
(see Fig. 1). The ray trajectory is then evolved via (5), with ini-
tial parameters
(z',0), (&0x,&0-) = (sinf’, —cos ) (9)
until it reaches the conducting boundary. Here, the ray impact
point and direction are computed by solving the arising non-

(w0,20) =

emergin, : incident
(a) rayzrg 9 ~ “ " rays
! emergin
free-space interface \ray1g 9

undulating
boundary

10

log(d/d,)

20 40 60 80 100

O

CO’C/ a
Fig. 2. Geometry as in Fig. 1, with @ = h = 1 (arbitrary units), A/a =
2/(57),n, = 15,and #* = 15°. Ray tracing results. (a) Two typical multihop

paths originating from nearby incidence points (initial separation dg = 1072 -
a) display rapidly increasing separation and eventually emerge with widely
different exit positions and angles. (b) Separation d between nearby-incident
rays (scaled by its initial value dy) as a function of the “ray time” 7 in (11)
(scaled by cj "a). The semi-log scale in the graph, and the dashed linear fit,
highlight the exponential trend typical of chaotic dynamics.

specular reflection. The process is iterated, using, instead of (9),
each computed impact point and reflection direction as new ini-
tial conditions in (5). The ray trajectory thus evolves as a se-
quence of [)-shaped arcs, and remains trapped within the layer
until the turning point in (8) lies beyond the free-space interface
(z¢ > 0). When this happens, the evolution is stopped, and the

exit angle
) (10)

dx

0° =
arcsin ( is |

is recorded.

B. Results From Ray Analysis

We now illustrate some representative results from a compre-
hensive series of ray-tracing simulations. Fig. 2(a) shows a typ-
ical evolution of two multihop ray paths originating from closely
adjacent incidence points with initial separation dy = 1073 - @
[not resolved in Fig. 2(a)] and with identical incidence angles
(6" = 15°); other parameters are specified in the figure cap-
tion. The two initially indistinguishable ray trajectories undergo
rapidly increasing separation on their travel through the struc-
ture, resulting in widely separated exit angles and positions. For
the same configuration, Fig. 2(b) shows the logarithm of the ray
separation d (in units of its initial value dy) as a function of the
“ray-time”

linear system of equations [(2) with (5)] numerically [37]; the 1
. S . . . T=c n(s)ds (11)
corresponding reflected ray direction is obtained trivially via Jray path
_ 4sgn(€ox) q 1—E€o. 1—¢p-
z(s) = @g — =B [arctan (exp v%) 1+§g~) — arctan (,/ TTee )] )
— 210
() = 20+ 5 — 210 | gy =m=an
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Fig. 3. Geometry as in Fig. 1, with « = h = 1 (arbitrary units), A/a =
2/(57), and #* = 15°. Sine of ray exit-angle #° versus scaled incidence

abscissa x*/a for various values of n,. (a) n, = 1.4; (b) n, = 15; (c)
n, = 90.

with ¢ denoting the free-space wavespeed. With the semi-log
scale used in the graph, the linear exponential trend (typical of
chaotic dynamics) can readily be discerned. Similar trends were
observed within a broad range of incidence angles. Note that the
slope of the linear fit in Fig. 2(b), averaged over the range of
initial conditions, provides an estimate of the “ray-dynamical”
Lyapounov exponent [8]-[13]. To provide a compact visualiza-
tion of regular versus irregular ray behavior, we show in Fig. 3
the sine of the exit angle §¢ in (10) versus the scaled incidence
impact point abscissa x* /a, for a fixed incidence angle and three
representative values of the maximum refraction index nj. One
observes intermingled intervals of regular/irregular dependence
of the exit angle on the incidence point position in the unit cell.
The ray picture in Fig. 2(a) suggests that the irregular behavior
stems from long trapping of the ray in the structure before es-
caping. It is thus not surprising to observe that the measure of
the incidence-point set corresponding to regular behavior (i.e.,
rapidly escaping rays) depends on n;, and tends to zero as ny
is increased (see Fig. 3) as a consequence of the resulting more
effective ray-trapping mechanism. As exemplified in Fig. 4, for
a fixed value of n;, = 15, the measure of the above regular
sets (i.e., the incidence-point set corresponding to regular be-
havior) turns out to be almost independent of the incidence angle
[compare Figs. 3(a) and 4(a) and 4(b)]. In these synthetic ex-
periments, the distribution of sin ¢ turns out to be almost uni-
form, independently of the incidence angle. This is exemplified
in Fig. 4(c), which shows the cumulative distribution function
(CDF) (here, the CDF is taken as the ratio between the number
of rays with sin §° smaller than the argument value and the total
number of rays in the experiment) exhibiting quasilinear trends,
for various incidence angles. Moreover, a closer look reveals
that the intermingled regular/irregular structure is hidden at any
scale, i.e., as the incidence-point position moves within arbi-
trarily small intervals at fixed incidence angle §* = 15°, as
shown in Fig. 5. In typical examples of open ray-chaotic BVPs

1.00 T T T
(©)

0.75+

ﬂ;:D (.

- 0.50}

g 5
0.25+
00 o5 o0 05 10

i sin 6°
xX/a

Fig. 4. As in Fig. 3, but for n,, = 15 and various incidence angles 6°. (a),
(b) 8% = 45° and 75°, respectively. (c) CDF of sin 8¢, estimated considering
2000 rays with incidence points distributed along the unit cell. — % = 15°; ---
0 = 45°; ... 0° = 75°.

3

x/a
Fig. 5. Magnified details of Fig. 3(b) displaying the intermingled
regular/irregular structure at subscales of the unit cell size «. (a) Incidence
abscissa ' € [0,a/100] (i.e., 1/100 scale) and (b) incidence abscissa
2t € [4a/1000,5a/1000] (i.e., 1/1000 scale).

(e.g., the n-disk pinball [20]), the set of irregular (“singular,” in
the terminology of [20]) points is actually found to have a fractal
character. In these scenarios, important insight is obtained from
the statistical analysis of the “dwell time” (i.e., the time spent
by the rays in the structure before escaping) [20]. For our con-
figuration, the dwell time is thus defined as

D = cal/ n(s)ds.
z(s)<0

Fig. 6 shows the dwell-time complementary CDF for our system
with the same parameter configurations as in Fig. 3. In Fig. 6(c)
(n, = 90), a linear exponential behavior is observed, irrespec-
tive of the incidence angle, as evidenced by the inset plot in
semi-log scale. This observation is consistent with the results
available in the technical literature [20], from which the dwell-
time probability density function P(7p ) for strongly chaotic dy-
namics is known to have the form

(12)

P(1p) = vp exp(—yp7D) (13)

where yp = (1—dg)\;, with ), being the Lyapounov exponent
associated with the ray dynamics and dy denoting the Haus-
dorff dimension of the set of “singular” points [20]. In Fig. 6(a)
and (b) (np, = 1.4 and n, = 15, respectively), corresponding to
configurations where regions of regular behavior are nonnegli-
gible or even dominant, one still observes an exponential tail in
the dwell-time complementary CDF. Here, the regular dynamics



CASTALDI et al.: RAY-CHAOTIC FOOTPRINTS IN DETERMINISTIC WAVE DYNAMICS 757

1-CDF

5000 10000 15000

10 20 30 o 250 500 750 1000 O 5000 10000

COTD/H COTD/H corD/a

Fig. 6. Complementary CDF (i.e., 1-CDF) of dwell time 7 in (12) (scaled by
¢g *a) for the parameter configurations in Fig. 3, at various values of incidence
angle 6%, estimated considering NV, ray trajectories with incidence abscissa *
uniformly distributed over the unit cell. (a) n;, = 1.4, N,. = 10°; (b) n;, = 153,

15000

N, = 105 (the zoom in the inset highlights the initial staircase behavior); (c)
n, = 90, N, = 10* (the semi-log scale in the inset highlights the linear
exponential behavior). — 6% = 15°;--- §* = 45°; ...... 9t = 75°.

principally affects the initial part of the distribution, with the
presence of a staircase behavior [clearly evident in Fig. 6(a),
and evidenced by the zoom in the inset of Fig. 6(b)]. This be-
havior can be explained by recalling that regular dynamics here
is typically associated with rapidly escaping rays whose dwell
times cluster around certain values. From the technical literature
(see, e.g., [38] and the references therein), the dwell-time distri-
bution in these mixed cases is expected to exhibit a power-law
tail, attributed here to long-trapped marginally-stable trajecto-
ries. Such a tail, however, was not clearly observed in the above
simulations, which are based on sets of 10°-10° trajectory re-
alizations (compatible with our current computational capabil-
ities). Our inability to capture the power-law behavior in these
cases may be due to the very small measure of the phase-space
islands corresponding to long-trapped marginally stable trajec-
tories, which are very difficult to sample numerically in the ab-
sence of precise a priori knowledge of the ray dynamics. To gain
such precise knowledge would require a parametric analysis,
which is beyond the scope of this preliminary investigation. An
example parameter configuration (n;, = 5, #* = 45°) where
the power-law tail was clearly observed is shown in Fig. 7. The
semi-log scale in the plot highlights the departure in the tail from
linear exponential behavior. The power-law behavior of the tail
is evidenced in the log-log scale inset plot, and was estimated
numerically (via curve fitting) to be ~ 7, 185 Which is consis-
tent with observations in the technical literature (see, e.g., [38]
and the references therein).

To sum up, the above-noted features tend to indicate that the
ray dynamics in our system is generally of “mixed” type [12],
[24], with the presence of both regular and chaotic regions in the
phase space. However, it seems possible to tune the parameter
configuration (e.g., acting on the refractive index gradient) so as
to render the dynamics strongly chaotic.

Concerning the philosophical question as to the accuracy of
our (or any) computer simulation due to unavoidable roundoff
errors, our ray simulation results might appear questionable.
Chaos implies exponential amplification of small differences,
which can always be expected to lead to exponential divergence
of a numerical (i.e., finite-precision) trajectory from the frue tra-
jectory with the same initial conditions. This fundamental issue
has been investigated in the topical literature (see, e.g., [12] and
[39]), and the reassuring conclusion is that a numerical trajec-
tory is meaningful since, in its neighborhood, there generally

1 1
0 500 1000
c,t/a
Fig.7. AsinFig. 6,butwithn, = 5,6* = 45°,and N,. = 10°. The semi-log
scale in the plot highlights the departure in the tail from linear exponential
behavior. The the power-law character of the tail (~ 7, '%%, from numerical
fit) is evidenced by the inset plot in log-log scale.

exist a true (i.e., errorless) trajectory with slightly different ini-
tial conditions.

IV. FULL-WAVE ANALYSIS

We now turn to the full-wave analysis of the scattering and
propagation behavior of the configuration in Fig. 1. We restrict
our attention to time-harmonic transverse-electric (TE) plane-
wave illumination, with suppressed exp(jwt) dependence

E'(z,2) = Egexp [—jko(zsinf’ — zcos§')] (14)
where kg = w,/eopy = 2m/)\p indicates the free-space
wavenumber, with )\ denoting the free-space wavelength.
To obtain numerical reference solutions for similar classes of
problems (like graded-index diffraction gratings), some authors
have used semianalytic Floquet-based finite-difference [40]
and transmission-matrix [41] methods. We decided to pursue
an entirely analytically based problem-matched test model
approach tailored around the particular ray-chaotically inclined
deterministic propagation environment in Fig. 1, in order a)
to have a rigorous anchor for parametric exploration of the
evolution of ray-chaotic footprints and b) to hopefully render
the corresponding parametric numerical implementations more
efficient.

A. Solution Strategy

Referring to Fig. 1, in view of the assumed spatial period-
icity of the boundary and the z-invariance of the dielectric, the
problem can be reduced to the analysis of a generic unit cell
with phase-shift boundary conditions at the lateral walls. Ac-
cordingly, the field E™ reflected into the half-space z > 0, and
the field £* transmitted into the region ((z) < z < 0, may be
represented as Floquet expansions

Er(:’:v Z) = EO Z bm exp [—_](]szlt + k[)zmz)] ’

z>0 5)
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oo

z) =Ey Z cm(2) exp (=jkaema) ,

m=—0oo

((z) <z<0.

E'(x,
(16)

In (15) and (16), b, and ¢,,(z) are unknown mode amplitudes,
whereas k., and kg, represent the mth Floquet mode trans-
verse and longitudinal wavenumbers, respectively

2
Kom = kosin#® + m—ﬂ-

a
kam = V k2 k%nw

Re(kozm) Z 0.
The transmitted field inside the dielectric layer is governed
by the Helmholtz equation

a7)

0? 0?
<0x 2 z)E%’v 2) + kgn?(2)E'(,2) =0 (18)
which, by inserting the expansion in (16), yields a (simple)
countable infinity of second-order ordinary differential equa-
tions in the unknown coefficients ¢, (z). For the class of
refractive index profiles in (1), such equations can be recast in
the canonical form
d2

dw2+(22w_

V) )u=0 (19)

where

vz 2ko 9 (2kzm>2
w= —_, n=--, v =
v v

2
Equation (19) admits solutions in the form u(w) = C, [ne™],
with C,, being a generic Bessel/Hankel function of order v [42].
Accordingly, the ¢,,,(z) functions in (16) can be expressed as
linear combinations of two linearly independent Hankel func-
tions

(20)

cm(2) = umUn(2) + vm Vin(2) (1)
(1)
Um(z)} Hok,, ) [M exp (32 )} 22)
174 (2)
) H S ot |25 exp (32)]

thereby reducing the original problem to the calculation of the
unknown coefficient sets b,,, u,, and v,,, via enforcing the
boundary conditions at the interfaces z = 0 (continuity of the
tangential components of the electric and magnetic field) and
z = ((z) (vanishing of the tangential component of the electric
field)

EY(z,07) = E"(x,0%) + E'(z,0%) (23a)
N T A

(9ZE (2,07) = azE (z,07) + (9ZE (z,07) (23b)
E'(z,((z)) = (23¢)

From the first set of boundary conditions in (23a) and (23b)
at z = 0, one obtains a countable infinity of linear equations

as shown in (24a) and (24b) at the bottom of the page, where
, 00, Omn represents the Kronecker delta, and
the overdot denotes differentiation with respect to the argument.
Eliminating the b,,, coefficients, one further obtains

—Um |:k20mvm(0) - JkOVm(O)j| + 2kzOm6m0~ (25)

On the other hand, the boundary condition in (23c) at the
conducting undulating surface z = ((z) yields

> fumUnl

m=—00

m = —00,...

)]+ v Vi C(a )1}exp(

(26)
which is far less straightforward to deal with. Recalling that
the functions U, [((z)], Viu[¢(z)] are z-periodic with period
a, it is suggestive to Fourier-expand them so as to recast (26)
into a more manageable Fourier series. In this connection, the
special class of profiles ¢(z) in (2) turns out to be particularly
“friendly,” since it maps the functions U,,,[( ()], V;»[¢(x)] into
fairly simple canonical forms

(U V)m[¢(z)] = HB? [c’ + b cos <%T7rx>] (27)
where [see (22)]
o 2 ’ 2k0 ’}/5
v ‘;kTm , C |’Y| exp( 5 >
; 2ko ’Y_Z
¥ = rhes (2 ) (28)

The Fourier expansions of (27) can thus be performed analyti-
cally, by first utilizing the Neumann addition formula [42]

(e}

2w
H(1’2) / bl —
b ¢ 4+ b cos —a €T E

p=—00

X J, [b' cos <2—7T:1:)}
a

and subsequently Fourier-expanding the .J, Bessel functions in

(29)
gy [eos (Za)] = S0 4 Pk 30
p |Vcos | —a || = Z v OXP | JI— (30)

g=—00

H,2)()

v—p

(29)

where [43]

1 [ 2 2
Jpqg = E/ / exp< jq?) Jp <b'cos ?) dx
J—a/2

= % [1+ (=1)P19]

v v
X Jp—a)/2 (5) Tw+a)/2 (5) - 3D

(24a)

(24b)
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Fig. 8. Typical ducted mode in (36), with /Ao = 6, h = a, n, = 153,

m = 6,0 = 15°. (a) Modal field distribution and (b) modal cutoff condition
in (37).

One thus obtains
H ¢+ cos L g Z
v a

. 27w
Jp,q €XD (J(IT) (32)

g=—o0
which can be further recast as

1,2 2mx _ - 1,2
ng ) |:C/ + b/ COS <T = Z Hl(/,q )

g=—00
2
X exp (y‘qﬂ) (33)
a
where

1,2
H:S,qu): Z Hi—p)(c/)‘]pﬂ'

p=—o00

(34)

Substituting (33) into (26) [with (27)], and regrouping the har-
monics of the resulting Fourier series, one obtains a countable
infinity of linear equations

+oo
Z (UmH,E,lp),m + UmH,E?IB,m) =0, p=-00,...,00

(35
which, together with (25), can be used to determine the unknown
coefficients u,,, and v,,, m = —o0, ..., 00.

To better understand the wave phenomenologies involved, we
first observe that, in the limit m >> 1, one can verify from (25)
that |w, | ~ |vm|, whence [from (21) and (22)]

em(2) ~ Re[(U, V) (2)]. (36)
Fig. 8(a) shows the typical behavior of (36) in the region
—h < z < 0. It clearly resembles a ducted (longitudinal) mode
with the typical oscillatory and evanescent regimes. The two
regimes merge into a transition (turning point) region located
in the vicinity of z = z., defined by the modal cutoff condition
[36], [44] [see Fig. 8(b)]

k2, (20) = k2n®(z.) — k2, = 0. (37)

0.01

1E-3

0.01

Relative error (magnitude)

1E-3

Fig. 9. Geometry as in Fig. 1, witha = h, A/a = 2/(57) and 8" = 15°.
Residual truncation-induced error (scaled to incident field amplitude Ej) in
boundary conditions (23c¢) as a function of number of retained modes m . (a)
a/Ao = 0.5 (low frequency) and (b) a/ Ao = 6 (high frequency).

The wave dynamics of the configuration in Fig. 1 is thus pa-
rameterized in terms of Floquet (plane) waves (in free space)
and ducted modes (in the dielectric layer), coupled through the
boundary conditions.

B. Implementation Details and Numerical Convergence

For computational purposes, the series in (34), as well as the
Floquet expansions in (15) and (16) [and hence the systems in
(25) and (35)], need to be suitably truncated. For the p-summa-
tion in (34), we used a pragmatic criterion (validated a poste-
riori), truncating the expansion when the magnitude of the first
omitted term is below a given threshold (10716 x the leading
term). As typical in mode-matching-type algorithms, the trunca-
tion of the Floquet expansions (15) and (16) was pursued by in-
spection, via monitoring the truncation-induced mismatch error
in the (most critical) boundary conditions (23c) within the unit
cell. As a rule of thumb, we found that truncating (15) and (16)
at
(38)

< a

|m| < mp ~ nh)\_o
and utilizing the pragmatic truncation criterion stated above for
the the summation in (34) usually yields acceptable accuracy.
The physical interpretation of the truncation condition in (38)
can be gauged from the modal cutoff condition in (37) and con-
sists of neglecting in the transmitted field expansion the ducted
modes with cutoff level at sufficient distance from the free-space
interface (2. < —h). Using the (large order) asymptotic expan-
sion of the Hankel function [42] in (36), one can show that the
neglected modes decay exponentially with m

e~ (2~ (ek‘(ﬂ)
v]v|

~ exp(—vlogv) ~ exp(—mlogm). 39)
Inclusion of such modes, besides not necessarily improving the
overall accuracy, can even yield the opposite effect by even-
tually deteriorating the numerical conditioning of the system
[45]. Fig. 9 illustrates the convergence behavior for two typical
configurations which will be considered below. It is observed
that the above truncation criteria yield relative residual errors
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in the boundary condition (23c) on the order of 1072, In this
and all simulations that follow, the system in (35) was truncated
so that |p — m| < my, and subsequently solved, together with
(25), using least square methods [45]. Numerical implementa-
tion (25-digit precision) was accomplished using Mathematica
[46]. As a further consistency check, power conservation was
found to hold with acceptable accuracy (relative error ~107%).

The above full-wave strategy, in its present form, allows re-
liable and relatively time-affordable analysis of parameter con-
figurations with electrical size up to a/Ag ~ 6 and maximum
refractive index nj; ~ 15.

V. RAY-CHAOTIC FOOTPRINTS IN THE FULL-WAVE REGIME

A. Background

Before investigating possible ray-chaotic footprints em-
bedded within the full-wave reference solution in Section IV,
we first refer to some relevant known results (see [22]-[25]
for a thorough review and analytic details). “Ray-chaotic foot-
prints” denotes distinctive features in the HF wave dynamics
which distinguish ray-chaotic BVPs from those (e.g., coordi-
nate-separable) exhibiting regular ray behavior. Remarkably,
in most cases such features have universal properties. For
instance, in internal BVPs, the (asymptotic) neighboring-eigen-
value spacing distribution for regular geometries is known to
be Poissonian [24]. For ray-chaotic geometries, instead, the
spectral (eigenvalue, eigenfunction) ensemble properties have
been found to be intimately related to those of (rather general)
random matrices [47]-[49]. Other examples of ray-chaotic
footprints in internal BVPs are related to field nodal-domain
statistics [50]. In external BVPs, on the other hand, signatures
of ray chaos have been found in the random-like angular
spectrum properties of the scattering matrix and cross-sections,
with intriguing connections to the dwell-time distribution of
the corresponding ray dynamics [20], [21]. For transient exci-
tation, ray-chaos-induced peculiar behavior has been found in
time-reversal experiments [51]-[53].

With a few notable exceptions (see, e.g., [54]), what seems
to emerge is the presence, in the wave dynamics, of a transition
from a regular regime (with smooth dependence on parameter
variations) to an irregular regime (with sensitive dependence on
parameter variations and ergodic random-like behavior) as the
frequency of operation is increased. Incidentally, such strong
parametric sensitivity is likewise observed in electrically large
real-world complex scatterers (e.g., aircraft [55]). In the irreg-
ular regime, the full-wave properties of ray-chaotic systems turn
out to be most naturally described in statistical terms. For ray-
chaotic internal BVPs, a well-established statistical model is
based on the assumption that the field at any point is a superposi-
tion of a large number of plane waves with fixed wavevector am-
plitude and uniformly distributed arrival-directions and phases
[56]. Considering additional ergodicity assumptions, this yields
very general consequences in the wavefield statistics: In an ar-
bitrary spatial domain D spanning several wavelengths (suffi-
ciently large so as to yield meaningful statistics, and yet suf-
ficiently small so as to reveal possible spatial variations), the
wavefield samples will form a zero-average Gaussian ensemble
[57], with spatial field correlation exhibiting peculiar (universal)
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Fig. 10. Parameters as in Fig. 9. Magnitude (grayscale plot) of the transmitted
field E* in (16), normalized with respect to its maximum value | E* | max, within
the unit cell. (a) a/Ag = 6 and (b) a/Ag = 0.5.

forms (e.g., Bessel function Jy in 2-D cases [56], [58]). The
random-plane-wave (RPW) model has been shown to param-
eterize very well the statistical properties (both predicted [59]
and measured [60]) of asymptotic HF wavefunctions of strongly
chaotic billiards in the irregular ergodic regime. Interestingly,
similar RPW models have been utilized successfully to charac-
terize complex radar signatures [27] as well as narrow-band EM
reverberation enclosures [61], [62]. The reader is also referred to
[63]-[65], where examples of billiards with “mixed” dynamics
are considered and possible deviations from the RPW model are
explored.

We now move on to presenting some representative results
obtained from the rigorous monochromatic, plane-wave TE-in-
cidence, full-wave analysis in Section IV. In what follows, we
consider the geometry in Fig. 1, witha = hand A/a = 2/(57).

B. Our Test Problem: Transmitted Field

We begin with the field E? transmitted into the dielectric
layer ((z) < z < 0. Fig. 10 displays the field intensity plot
in the dielectric layer within the unit cell, computed via (16),
for n, = 15, 8° = 15°, and two different frequencies. In
the HF case [a/)\g = 6, Fig. 10(a)], a fairly complex/irreg-
ular behavior is observed which visually resembles those of er-
godic eigenfunctions in strongly chaotic billiards [59]. More-
over, there was found to be a strong sensitivity with respect to the
incidence angle. Conversely, at lower frequencies [a/Ag = 0.5,
Fig. 10(b)], the field intensity pattern exhibits more regular fea-
tures. Similar regular behavior was observed in the presence of
weaker refractive index gradients and shallower corrugations.

The above-noted visual resemblance between the HF field
distribution in Fig. 10(a) and those of ergodic eigenfunctions in
strongly chaotic billiards [59] suggests that RPW-type models
[56] could be applicable to our configuration as well. To ex-
plore this possibility, we carried out a comprehensive statistical
analysis of the HF transmitted field distribution. Fig. 11 shows
the CDF of the field (magnitude) distributions in Fig. 10(a)
(a/Ao = 6), over a spatial domain chosen according to the
guidelines in Section V-A. As one can see, the CDF is nicely
fitted by the RPW prediction (Rayleigh CDF [57]). Also shown
in Fig. 11(a), for comparison, is the transmitted field CDF for
a parameter configuration with A = 0 (i.e., flat conducting
surface) and the same electrical size, which does not exhibit
ray chaos. In this case, the agreement with the corresponding
Rayleigh fit is considerably poorer. This is better quantified in
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Fig. 11. As in Fig. 9, with a/\; = 6. CDF of transmitted-field normalized

amplitude |E*|/|E?|max for undulating (A/a = 2/(57)) and flat (A = 0)
conducting surface. CDFs are estimated over a square observation domain of
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width a/3 centered at (z, = a/2,z, = —h/2) and are compared with the
RPW prediction (Rayleigh fit). (a) — Computed CDF (undulating surface); ---
computed CDF (flat surface); ...... Rayleigh fit (undulating surface); - - - - -

Rayleigh fit (flat surface). (b) Absolute difference between computed CDF and
RPW prediction. — Undulating surface; --- flat surface.

Fig. 11(b), where the absolute differences between the com-
puted CDF and the corresponding Rayleigh fit are displayed for
both cases. Slight variations in the agreement, as well as in the
fit parameters, were observed for both cases when moving the
observation domain across the unit cell.

Concerning the field spatial correlation, in 2-D ray-chaotic
homogeneous billiards (e.g., Sinai or stadium), the RPW model
predicts a Bessel Jy behavior [56]

S E(r-g) B (e
- [ Jp |B(r)|2dr

where r = (z,z), v’ = (2/,2'), * indicates complex conju-
gation and D is the observation domain (see the discussion in
Section V-A). Note that in the above-mentioned ray-chaotic
homogeneous billiards, the analysis is typically focused on
modal wavefields, and x in (40) corresponds to the modal
wavenumber. Generalization of (40) to inhomogeneous con-
figurations like ours is not straightforward. Nevertheless, we
verified that (40) describes quite accurately the HF spatial
correlation in the x’-direction at fixed 2/, via replacement of »
with an effective wavenumber k. obtained by curve fitting as
noted below. Typical results are shown in Fig. 12. Specifically,
for the HF field distribution in Fig. 10(a) (a/Ao = 6), Fig. 12(a)
shows an z’-cut (at 2z’ = 0) of the real part of the spatial corre-
lation computed numerically over a square observation domain
of width a/3 centered at (z, = a/2,z, = —h/2) versus its
zeroth-order Bessel function (Jgy) fit. Acceptable qualitative
agreement is observed. The imaginary part of the numerically
computed spatial correlation (not shown) was found to be
practically negligible (<0.1 in absolute value). From the .Jy-fit,
we estimated the effective wavenumber k. in (40) numerically
(in this example, k.a ~ 62.13). Repeating the experiment at
different positions (z,, z,) of the observation domain center,
the effective wavenumber was found to be dependent on z,, as
shown in Fig. 12(b). Also shown in Fig. 12(b), as a reference,
is the behavior of the local wavenumber k(z,) = kon(z,). It
is observed that, though not coincident, the effective and local
wavenumbers exhibit the same trend.

) dr
C(r") ~ Jo(|r']) (40)

¥ 20 [ " I 1 1
-0.7 -0.6 -0.5 -0.4 -0.3
z, /h
Fig. 12. As in Fig. 11, but spatial correlation in (40). (a) z’-cut at z’ = 0.

— Numerically computed over a square observation domain of width a/3
centered at (v, = a/2,z, = —h/2); - - - zeroth-order Bessel function (Jy)
fit. (b) Effective and local wavenumbers (scaled by unit cell size @) versus
z./h. — Effective wavenumber « . (zo) in (40) estimated from Jo-fit; --- local
wavenumber k(z,) = kon(z,).

The above results seem to confirm the anticipated tendency
in the full-wave dynamics toward irregular behavior as the fre-
quency of operation is increased. The field statistics in the ir-
regular regime turn out to be consistent with those predicted by
standard random-wave models.

C. Our Test Problem: Reflected Field

The far-field reflection properties of our configuration are em-
bedded in the vector b = [by,,, ..., by, | of modal coefficients
b, in (15) corresponding to propagating Floquet modes (with
m,; and my tagging the edges of the visible range). We have
accordingly performed a comprehensive parametric analysis to
reveal possible ray-chaotic footprints. For the same HF config-
uration as in Fig. 10(a), the real and imaginary parts of the Flo-
quet-mode coefficients are shown in Fig. 13(a) and (b), for two
slightly different incidence angles, with the subscript m identi-
fying the Floquet-mode wavevector directions

f,, = arcsin <sin gt — m/\[)) .

(4D
a

One observes strong sensitivity of the field with respect to the
incidence angle. This sensitivity was found to decrease substan-
tially in the presence of weaker refractive index gradients [see,
e.g., Fig. 13(c) and (d)], as well as shallower corrugations and
lower frequencies. In order to parameterize such sensitivity in a
compact and effective fashion, we consider the indicator

Ry = |1 (@b + 50
b
g b (0)%, (67 + AGY)
S - (42)
o6
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Fig. 14. AsinFig. 13, but with n;,, = 15 only. Sensitivity indicator R, in (42)
(with A@* = 1°) versus incidence angle 6° for different values of the electrical
sizea/XNo. —afXo =1;—af/Xg=2;...... afAo = 4.

where the variation A#? in the incidence angle is assumed to be
sufficiently small so as not to appreciably change the Floquet
modal structure [which depends on #? via (17)]. The indicator
Ry, in (42) corresponds to the distance in the complex plane be-
tween one and the normalized scalar product of two Floquet-co-
efficient vectors. Recalling the properties of the scalar product,
it is readily verified that values of R, close to zero indicate slight
sensitivity (i.e., regular behavior) in the reflected field, and vice
versa. For the same configurations as in Fig. 13 (with nj, = 15),
the behavior of R, within the angular interval 6% € [0, 45°] (with
Af? = 1°) is displayed in Fig. 14, for three different values of
the electrical size a/\o; the corresponding mean and variance
(with respect to #?) are summarized in Table 1. A rather spiky
overall behavior is observed. Recalling that small values of R,
indicate slight sensitivity (i.e., smooth dependence on the inci-
dence angle) in the reflected field, and vice versa, one can define
“regular” regions as those where R;, remains sufficiently small.
Such “regular” regions are clearly visible at lower frequencies
(a/Ao = 1) and progressively disappear at higher frequencies
(a/Xo = 2,4), thereby indicating overall larger sensitivity of
the reflection signatures with respect to the incidence angle. It
is observed from Table I that both the mean and variance in-
crease monotonically with increases in the electrical size.

TABLE 1
MEAN VALUE AND VARIANCE (WITH RESPECT TO THE INCIDENCE
ANGLE #*%) OF THE SENSITIVITY INDICATOR I?, IN (42) FOR THE THREE
CONFIGURATIONS IN FIG. 14. STATISTICS ARE ESTIMATED NUMERICALLY,
USING 46 SAMPLES DISTRIBUTED UNIFORMLY WITHIN THE ANGULAR
INTERVAL 8% € [0,45°], WITH Af* = 1°

a/Xo | Mean(Ry) | Variance(Ry,)

1 0.214 0.232
2 0.375 0.264
4 0.506 0.303

Again, the above results seem to indicate a tendency, in the
HF regime, toward irregular, random-like behavior of the reflec-
tion signatures, similar to those observed in open chaotic bil-
liards [20], [21] and also in real-world complex scatterers [55].

D. Potential Applications

Besides its inherent academic interest, the ray-chaos-resem-
bling wave dynamics exhibited by the test configuration pre-
sented here might be of interest in several EM engineering ap-
plications. For instance, the complex and extremely sensitive
scattering signatures observed in Section V-C might be of po-
tential use for radar countermeasures. We note that the com-
bined effect of periodic corrugations and dielectric fillings has
already been explored as a possible model for radar-cross-sec-
tion reduction and control (see [66]). For such applications, ray
chaos might offer new perspectives. In this connection, whole
classes of ray-chaotic scatterers may be envisaged, based on
known gravitational billiards, by replacing gravity with a suit-
ably graded refractive index.

VI. CONCLUSIONS AND OPEN ISSUES

A novel class of ray-chaotic 2-D boundary-value problems
has been shown to be associated with a particular novel synthetic
test environment that involves both spatially confined and exte-
rior-penetrating rays and modes. Ray-tracing simulations have
been presented to illustrate its relevant ray-chaotic features. A
rigorous full-wave analysis of the corresponding (TE-incidence)
EM boundary value problem has been detailed and utilized to
perform a comprehensive parametric study. Results for the high-
frequency wave dynamics confirm the anticipated trends toward
irregularity and other peculiar characteristics (not observed in
geometries with “regular” ray behavior), which can be inter-
preted as “ray-chaotic footprints.” In the irregular (random-like,
ergodic) regime, the wave dynamics turns out to be effectively
described by random-wave statistical models. Apart from the in-
herent academic interest, the test configuration here gives rise to
performance characteristics that might be relevant, for example,
to radar countermeasures.

Current and future research will be focused on still open
issues, using the full-wave solution for our model as a synthetic
testbed for calibration of asymptotic and other phenomeno-
logically motivated parametric excursions. Thus, the full-wave
approach, though rigorous and capable of producing essential
reference solutions, does not provide a direct parameterization
of the interaction between the ducted-type and the Floquet-type
modes, which we hope to develop from a problem-matched
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(high-frequency) asymptotic analysis. In this framework, hy-
brid ray-mode representations [44], as well as local spectral
analysis [67], could be useful and insight-providing tools.
Conformal mapping procedures (see [68]) that smooth out
the periodicity of the undulating surface at the expense of
additional inhomogeneities in the refracting index profile of
(1) could be of potential interest for a different class of test
environments. Other interesting and worthwhile issues pertain
to the development of new random-wave statistical models
for the irregular regime, tailored to our specific configuration.
In this connection, random superpositions of solutions of the
eikonal equation pertaining to the profile in (1), as well as
the connection between the dwell-time distribution and the
statistical correlation of the reflected wavefield [20], will be
given attention.
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