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data, suggesting the use of higher order statistics for modeling the radar
data.

It is thus evident, that based on the statistical properties of the radar
data for a realistic radar target as well as the 2-D images generated,
using frequency and aspect data, regions exists that exhibit strong
higher order statistics.

III. CONCLUSION

The backscattered field of an Airbus A310 model was measured in a
compact range, and frequency data were used to investigate the statis-
tical properties and dominant statistical dependency of measured radar
data as a function of aspect angle. The results indicate that the use of
higher order statistics or second-order statistics in radar imaging al-
gorithms must be done with care. Second-order statistics may be used
most of the time, but the reader must be aware that in certain angle re-
gions higher order statistics must be considered. Although, higher order
statistics has many advantages, it is not advisable to use only higher
order statistics if most of the measured radar data indicate second-order
statistics. If multiple reflections and higher order interactions occur
over a specific aspect region, higher order statistics is preferred over
second-order statistics to analyze and model the measured radar data.
Second-order statistics is likely to be preferred if the radar target is less
complex and produces minor multiple reflection and higher order inter-
actions.A priori knowledge of the scattering mechanisms contributing
to the backscattered field in a certain region is thus required to know
the statistics to use in generating radar images.
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Moderately Rough Dielectric Interface Profile
Reconstruction via Short-Pulse Quasi-Ray Gaussian Beams
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and Leopold B. Felsen

Abstract—A new technique for estimating the coarse-scale profile of a
moderately rough interface between air and a homogeneous dielectric half-
space is presented. The proposed approach is based on space-time sparsely
sampled reflected field observations and uses a quasi-ray Gaussian beam
fast-forward model, coupled with a compact parameterization of the sur-
face profile in terms of B-splines, from which the profile estimation problem
is posed as a nonlinear optimization problem. Numerical experiments are
presented to assess accuracy, reliability, and computational efficiency. The
proposed approach finds applications in adaptive schemes for rough sur-
face underground imaging of shallowly buried targets via ultra wide-band
ground penetrating radars.

Index Terms—Gaussian beams (GBs), ground-penetrating radars
(GPR), rough surfaces, short pulses.

I. INTRODUCTION

In ground-penetrating radar (GPR) applications, the twice-traversed
unknown rough interface separating air and soil acts as a major
source of clutter by distorting the interrogating signal on its way
to and from the targets of interest, and by generating complicated
backscattered field patterns which may obscure the useful signals.
Physics-based modeling of such clutter, which could significantly
enhance the ultimate GPR performance, poses challenging problems
from both the electromagnetic (EM) and signal processing viewpoints.
Standard statistical approaches, which tend to model such distortion as
additive colored Gaussian noise, perform reasonably well indetection
problems [1], [2]. However, they have been found to yield limited
accuracy and reliability in underground imaging techniques for target
localization and classification(see, e.g., [3]), for which alternative
approaches need to be explored. In this connection, we have been in-
vestigating a noveladaptiveframework, based onquasi-deterministic
compensation of the coarse–scale roughness effect. This approach
is based onprior estimation of the coarse–scale roughness profile,
which is accomplished by utilizing sparse reflected field observation
data and fast forward scattering models. In this communication, we
address the problem for the case of short-pulse illumination, typical of
current ultra wide-band (UWB) GPR systems. The proposed strategy
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Fig. 1. Problem geometry. An aperture-generated, quasiplane-wave,
amplitude-tapered TM-polarized pulsed field impinges from free space onto
a dielectric half-space with known relative permittivity and conductivity

, bounded by a moderately rough interface profile = ( ). The
obliquely incident illumination is projected onto the horizontal aperture plane
at = . The reflected field is sampled at time instants at fixed
receiver locations . . . on the observation plane = .

is built on recently developed Gabor-based narrow-waistedquasi-ray
Gaussian beam (GB) algorithms for short-pulse scattering from mod-
erately rough dielectric interfaces [4]. By exploiting these fast forward
models and a low-dimensional spline interface parameterization, to-
gether with the (usually small) separation between the rough interface
and the target, the prior surface estimation is posed as a nonlinear
optimization problem through fitting the model-based prediction to
the availableearly-time observation data. The subsequent problem
of quasi-deterministic compensation and underground imaging via
late-time response processing is addressed in a separate paper [5],
with particular reference to shallowly buried plastic mine-like targets.

II. STATEMENT OF THE PROBLEM

We consider the two-dimensional (2-D) problem geometry sketched
in the(x; z) coordinate space of Fig. 1, where all quantities and fields
are assumed to bey-independent. A homogeneous dielectric half-space
(soil) of knownrelative permittivity�r1 and conductivity�1 bounded
by a moderately rough interface with profilez = h(x) is illuminated
by ay-directed (TM-polarized) pulsed well-collimated EM field, gen-
erated by a large truncated aperture field distribution of widthd at
z = zA. They-directed incident electric fieldei is assumed to be well
approximated by a pulsed truncated amplitude-tapered plane wave

ei(r; t) � g(xB)p(t� c�1zB) (1)

wherer � (x; z), c is the free-space wavespeed,p(t) is a short pulse
of lengthT � d=c, and(xB ; zB) are beam centered coordinates

xB
zB

=
cos �A sin �A
sin �A � cos �A

x� xA
z � zA

: (2)

In (1) and (2),g(xB) is a spatial taper, while�A andxA denote the tilt
angle of the radiated beam relative to thez axis and its spatial displace-
ment, respectively. Parameters are chosen so that the illumination ta-
pers to zero and vanishes forjxj > d=2 (Fig. 1). This synthetic model is

a first step toward understanding the wave physics governing a moder-
ately rough interface, and will provide insights needed when addressing
a related class of real-world GPR configurations. At this stage of inves-
tigation, we ignore the presence of buried targets, which is dealt with
elsewhere [5]. Furthermore, we also neglect thenoisy(incoherent) con-
tribution of finer-scale roughness, and focus on estimating the coarse
scale roughness profileh(x) from sparse reflected field observations.

Estimation of rough surfaces from inverse scattering data has
received considerable attention during the past decade. However,
most available algorithms (see, e.g., [6]–[9]) have concentrated
on conducting surfaces and time-harmonic excitation, and usually
require densely sampled measurements. In [10], we addressed this
problem for frequency-stepped sparse observations. This approach
is extended here topulsed excitation. To proceed, they-directed
reflected electric field is sampled atNt time instants atNr fixed
receiver locationsxr1; . . . ; x

r
N at the observation planez = zr in

Fig. 1; theknown termin the problem is given by the set ofNr � Nt

samples. In our numerical experiments in Section V, we shall use
synthetic field-observation data generated via a full-wave solution of
the forward scattering problem (see [4] for details).

III. ROUGH SURFACE FORWARD SCATTERING MODEL

The forward scattering model, detailed in [4], is based on the
Kirchhoff Physical Optics (PO) approximation in conjunction with
the Gabor-based narrow-waisted pulsed beam (PB) discretization of
one-dimensional (1-D) aperture field distributions investigated in [11],
and is restricted to moderate roughness (both in height and slope) and
slightly lossy soils.

The PO “equivalent current,” which generates the reflected field, is
first parameterized in the frequency domain in terms ofx domain dis-
cretizedm-indexed Gabor basis functions with narrow widthL, cen-
tered on the Gabor lattice pointsxm = mL; these initial conditions
generate narrow-waisted, quasi-ray, complex-source-point GBs propa-
gating along the local reflection directions. For Rayleigh (i.e., differ-
entiated Gaussian) pulses, the resulting time domain analytic Fourier
inversion integral can be approximated by rapidly computable closed
form expressions, yielding the following approximate PO–PB expan-
sion for they-directed reflected electric fielder (see [4] for details)

er(r; t) �
jmj�(d=2L)

crmb
r
m(r; t� tm) (3)

where the Gabor expansion coefficientscrm and the time delaystm are
determined approximately by sampling the PO equivalent current pro-
file at the lattice pointsxm = mL, and the PB propagatorsbrm are ex-
pressed in terms of rapidly computable confluent hypergeometric func-
tions [4, Sec. IV-B]. The approximate forward scattering model in (3)
has been validated and calibrated over various parameter ranges against
a rigorous reference solution [4, Sect. V-A], and has been found to pro-
vide accurate and robust predictions for moderate roughness (both in
height and slope), nongrazing incidence, and slightly lossy soils (see [4,
Sec. V-C] for details). Numerical convergence is usually achieved with
d=L � 30 to 100 (narrow-waisted) PBs, resulting in minimal storage
requirements and typical computing times of 2 ms per space-time field
sample on a 700-MHz PC. Moreover, for computing a number of field
time samples at fixed-receiver locations, as required in Section IV, one
can take advantage of the structure of the PB propagators in (3) (see
[4, Sec. IV-B] for details) to compute the time-independent parts only
once, with resulting typical computing times of 20 ms for anentire
100-sample waveform, as compared with about 240 s required by our
full-wave reference solution. This light computational burden is essen-
tial for the overall computational feasibility of the proposed surface
estimation approach, with eventual application to subsurface imaging.
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IV. SURFACE PROFILE ESTIMATION

Due to the inherent ill-posedness of the surface estimation problem,
it is necessary to resort toregularizationstrategies. Acknowledging the
implicit limits of retrievable information through inverse scattering, our
regularization is based on a compact parameterization of the unknown
interface profile functionh(x) in a suitable finite-dimensional space.
As in [10], we modelh(x) using a quartic B-spline parameterization
[12] with fixed resolution matched to the coarse level of detail for the
reconstruction

h(x) =

N �1

n=�4

hns
(4)(x� xmin + n�x); xmin � x � xmax

(4)

whereby the coefficientshn become theunknownsof the problem. In
(4), s(4)(�) is a standard quartic B-spline basis function [12] (see also
[10, eq. (5)]) with finite spatial support5�x, where�x = (xmax �
xmin)=Nh denotes a scale parameter whose choice can be guided by
possible prior information and refinedadaptively(see Section V). To
prevent ill-conditioning, it is crucial that the number of unknown pa-
rameters to be retrieved does not substantially exceed theessentialdi-
mension of the observation data set. For the problem of interest here, in-
volving UWB pulsed excitation andclose proximitysetup, quantifying
the essential information contained in the observed field as well as the
effect of utilized prior information, is not straightforward. However,
the number of unknowns in the inverse problem is strongly related to
the type of roughness, the adopted parameterization, the extent of the
reconstruction interval, and the finer scales one is willing to neglect.
In this preliminary investigation, we didnotattempt to addressoptimal
strategies for profile parameterization and data acquisition. Instead, we
pursued a morepragmaticapproach. Under our stated problem condi-
tions, we obtained reasonably accurate and robust reconstructions, with
a reasonably small number of unknowns (Nh 30), via an adaptive
strategy (see Section V). Using our PO-PB fast forward model in [4] in
conjunction with the spline interface profile parameterization in (4), the
well-posedness of the problem is restored by estimating the unknown
parameters viafitting the model-based forward scattering prediction
to the available observation data, i.e., minimizing a suitablecost func-
tional. We use a simple least square formulation

J(h) = ker(h)� ê
rk2 =

N

p=1

N

q=1


p erpq � êrpq
2

(5)

where êrpq � êr(rrp; tpq) denotes they-directed reflected field
observedat time tpq 2 [T

(on)
p ; T

(off)
p ] at receiver locations

r
r
p = (xrp; z

r) (Fig. 1), erpq � er(rrp; tpq; h) denotes the cor-
respondingforward prediction for the surface profile coefficients
h = fh

�4; . . . ; hN �1g, and 
p are normalization coefficients.
Anticipating the possible presence of buried targets, dealt with in [5],
the observation intervals[T (on)

p ; T
(off)
p ] are chosen so as to gate out

the late-timeresponse (i.e., causal contributions from regions beyond
a critical depth), in order to prevent any possible bias in the surface
profile estimation.

In general, the predictive forward modeler r
r
p; tpq;h is a non-

linear function of the coefficientsh. Therefore, the cost functional in
(5) is generallynonconvexwith respect toh and may have multiple
local minima which correspond tofalse solutions. Standard descent-
based optimization techniques (e.g., conjugate gradient [13]) can lead
to falsely trapped solutions unless an accurate initial guess is available.
For the frequency-stepped configuration in [10], the smoothness of the
cost functional was found to be essentially dependent on the frequency

content of the excitation field, and a multiresolutionfrequency-hopping
strategy [14] was devised to achieve the global optimization (see [10,
Sec. III-C] for details). The same guidelines can be applied to the pulsed
excitation of interest here, with the pulse lengthcT now playing the key
role. In particular,shortpulses are desirable to enhance resolution and
accuracy in the reconstruction, but an exceedingly wide-band excita-
tion would most likely yield a highly nonconvex cost functional with
many local minima, whose global minimization could become com-
putationally unfeasible. In our numerical investigation, we found that
values ofcT 0:2d tend to produce undesired local minima in the
cost functional, whereas forcT 0:5d, the achieved resolution dete-
riorates (see Fig. 3). Moreover, for the eventual underground imaging
problem of interest (see [5]), it is also essential to achieve adequate
soil penetration, and therefore operate at sufficiently low frequencies.
In principle, one could gain more flexibility by using different sets of
pulses for the surface estimation (e.g., implementing multiresolution
optimization strategies as in [10]) and for the underground imaging, at
the expense of hardware complexity. However, in our numerical exper-
iments, we found that asinglepulse in the typical UWB GPR frequency
range (e.g., as in Fig. 2(a) withcT � 0:4d, i.e.,T � 1:3 ns ford = 1
m) can be used forbothsurface estimationandunderground imaging of
shallowly buried targets (see [5]), thus having the potential of yielding
a reasonable tradeoff between the above contrasting requirements.

V. NUMERICAL RESULTS

As mentioned earlier, the needed reflected field-observation data in
(5) were simulated via a reliable full-wave reference solution of the
forward scattering problem, based on the time-harmonic multifilament
current method in [15] and the fast Fourier transform (see [4, Sec. V-A]
for details). Forward predictions in (5) were generated via the PO–PB
model in (3) withd=L = 40 beams, for which the accuracy was pre-
liminarily verified.

We begin with a simplified configuration where we use as a tem-
plate for inversionthe samespline model that was used forgenerating
the actual profile. In other words, we assumea priori knowledge of
the scale parameter�x in (4) (i.e., the number of B-spline basis func-
tions), and focus on retrieving the unknown coefficientshn only. This
somewhat unrealistic assumption will be removed subsequently via an
iterative adaptiveframework. In all simulations below, acosine-ta-
pered normally-incidentexcitation was used withg(x) = cos(�x=d),
�A = xA = 0, and a single fourth-order Rayleigh pulse withcT =
0:4d [Fig. 2(a)], which was found by trial and error to provide a good
compromise between resolution and smoothness of the cost functional.
An observation time window[T (on)

p ; T
(o�)
p ] with cT

(on)
p = 0:3d and

T
(o�)
p = 0:8d, p = 1; . . . ; Nr, was used, so as to roughly gate out

scattering contributions from possible targets buried deeper than�8
cm below nominal ground (z = 0). The resulting cost functional in
(5) was minimized via the Polak–Ribiere version of the conjugate gra-
dient (CG) algorithm (particularly suited for nonquadratic functions
[13]). The needed gradient ofJ was computed using a central differ-
ence formula, resulting in2Nh+8 functional evaluations (i.e.,2Nh+8
solutions of a forward scattering problem),Nh + 4 being the number
of unknown spline coefficients in (4). Loosea priori knowledge was
exploited by using as an initial guess a flat interface atz = 0 (i.e.,
h = 0) and restricting the surface profile search to�8 cm around it.

A typical reconstruction example is shown in Fig. 2(b). The sur-
face profile realization was generated using the quartic-spline model
in (4) with random coefficients. Although no specific roughness model
(e.g., Gaussian) was simulated, geometric and constitutive parameters
were selected so as to mimic natural moderate roughness with max-
imum-to-minimum height� 4 cm and maximum slope� 32� for a
class of realistic soils [16]. The reconstruction is reasonably accurate
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Fig. 2. Rough surface profile reconstruction. Geometry as in Fig. 1, with( ) = cos( ), = 1 m, = 0, = 0, = 0 1 m. The rough
surface profile realization was randomly generated via the spline model in (4) with= 0 55 m, = 0 55 m, = 16, so as to simulate typical
moderate roughness (maximum height 4 cm maximum-to-minimum, maximum slope 32 ) for a class of realistic soils ( = 4, = 0 01 S/m).
For the surface profile estimation, the reflected field is sampled at= 11 receivers and = 50 time instants at = 0 3 m and = 0 5 m,

0.4 m,. . ., 0.5 m, with = 0 3 and = 0 8 , = 1 . . . . Normalization coefficients in (5): = 1 = 1 . . . . (a):
Fourth-order Rayleigh pulsed excitation( ) ( = 0 4 , i.e., 1 3 ns). (b) — Actual profile; - - - Reconstruction. (c) Corresponding cost functional in
(5) versus number of CG iterations.

throughout most of the interval, except near the edges of the illumi-
nated region. The likely explanation for this loss of accuracy, also ob-
served in [10], is due to the weak illumination in these regions, which
is attributed to the aperture field (cosine) tapering but was required to
avoid numerical artifacts (edge effects). This order of accuracy was ob-
served in many numerical experiments, with numerical convergence of
the minimization algorithm typically achieved within�30 CG itera-
tions [see Fig. 2(c)], resulting in computing times of�55 secs on a
700 MHz PC. No particular effort was made to fully optimize the nu-
merical implementation. In this connection, significant speed-up can be
expected through the use of more effective (e.g., analytic) approaches
to compute the gradient of the cost functional.

The influence of the pulse lengthcT in the smoothness of the cost
functional in (5) is illustrated in Fig. 3, which shows representative cuts
of the cost functional for values ofcT=d = 0:15, 0.4, and 0.55. The
cut direction in theh space is specified by

h c = (1� �)h a; �1 � � � 2 (6)

whereh a indicates theactualvalue of the spline coefficient array, and
� parameterizes the spanning, with� = 0 and� = 1 corresponding to
the actual interface and to the initial guess (flat interface atz = 0, i.e.,
h = 0), respectively. It is observed from Fig. 3 that in all cases, the cost
functional exhibits a deepglobal minimum at� � 0. For the shortest
pulse (cT = 0:15d), however, it also has somelocalminima and saddle
points. As the pulse length is increased (cT = 0:4d; 0:55d), the local
minima and saddle points are gradually wiped out, and the basin of
attraction of the global minimum becomes larger and larger, thus facil-
itating the global optimization via standard descent-based techniques.
Exceedingly long pulses (e.g.,cT = 0:55d), however, tend to produce
rather flat global minima, with a consequent loss of resolution, and a
possible bias in the position of the minimum due to inaccuracy in this
case of the (short-pulse asymptotic) PO–PB forward model. As already
mentioned in Section IV, the best reconstruction results were obtained
for values ofcT � 0:4d (as in Fig. 2); values ofcT 0:2dwere found
susceptible to yieldingfalse solutions, whereas values ofcT 0:5d
were found to yieldpoorer resolution.

Concerning the choice of data size and receiver locations, the pa-
rameters used are consistent with those typically encountered in real-
istic UWB GPR systems. The algorithm was calibrated for observation
heightszr ranging from 20 to 50 cm, number of receivers ranging from
5 to 20 (i.e., receiver spacing ranging from 1.6�c to 0.4�c, with�c de-
noting the free-space wavelength at the center frequency of the pulse),
and number of samplesNt ranging from 20 to 200. The parameters

Fig. 3. Parameters as in Fig. 2. Representative cuts of the cost functional in
(5), along the direction in (6), for various values of . — = 0 4 ; - - -

= 0 15 ; = 0 55 .

Fig. 4. Parameters as in Fig. 2. Surface profile reconstruction examples with
uncertain or corrupted data. — Actual profile; - - - Reconstruction with+10%
error in , ; Reconstruction with 10% error in , ; - -
- Reconstruction with observation data corrupted by10% uniform noise.

used in Fig. 2, arrived at through trial and error compromising between
accuracy and computational burden, were found to yield (average) res-
olution on the order of 2 to 3 mm. Concerning the choice of the normal-
ization coefficients
p in the cost functional (5), the best reconstruction
results (as in Fig. 2) were found for
p = 1; p = 1; . . . ; Nr . The
likely explanation is that this choice helps de-emphasizing the effect of
the edge receivers, for which the scattered field predictions from our
PO–PB forward model are somewhat less accurate.

In order to assess the reliability of the surface profile estimation al-
gorithm, we performed a number of sensitivity tests with respect to
possible uncertainty in the prior knowledge, as well as corruption in
the observed data. Fig. 4 displays typical reconstructions obtained by
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Fig. 5. Parameters as in Fig. 2. Example of iterative adaptive spline parameterization. (a): Reconstruction using a tentative initial coarse parameterization ( =

6) and a flat interface initial guess (number of CG iterations: = 8; final value of cost functional: = 70 4); (b), (c), (d): Refinements obtained by
progressively increasing the number of basis functions,= 12 18 24, respectively, and using the previous stage reconstruction as initial guess (=
12 12 23, respectively; = 26 3 7 0 53, respectively). — Actual profile;- - - Reconstruction.

introducing a�10% error in the values of the soil parameters�r1 and
�1 used in the forward scattering model, and by using observation data
corrupted by�10% uniform noise. As one can see, the surface estima-
tion algorithm turns out to be remarkably robust.

Finally, to remove the unrealistic perfectly-matched-template as-
sumption, we now invoke an adaptive iterative framework for estimating
the surface profile in Fig. 2(b), which was generated via the B-spline
model in (4)withNh = 16,bypostulatingamismatchedspline template
(i.e.,Nh 6= 16). Referring to Fig. 5, the procedure is started with a tenta-
tive initial coarseparameterization (Nh = 6)and theusual flat-interface
(z = 0) initial guess for the profile, which leads to the corresponding
gross-scale reconstruction in Fig. 5(a). The resolution is gradually
increased, utilizing at each stage the previous stage reconstruction as
the initial guess. Fig. 5(b)–(d), for instance, show the iterative improve-
ments obtained via the sequenceNh = 12; 18; 24 (deliberately chosen
so as to avoid the perfectly matched caseNh = 16), with the spline
parameterization progressively tuned so as to capture the various details
in the surface profile. The accuracy in the last stage reconstruction
[Fig. 5(d)] is comparable to that achieved with a perfectly-matched
template [Fig. 2(b)]. In this example, a pragmatic stopping criterion was
used based on the (in) sensitivity of the cost functional with respect to
further increases inNh. Specifically, a maximum of 30-CG iterations
was used in each reconstruction stage, andNh was increased until the
decreasing rate in the cost functional between two subsequent iterations
was found to be less than 1%. Although no attempt was made to find
an optimal updating schedule forNh, a satisfactory tradeoff between
reconstruction quality and computational burden was found for�20%
Nh increase. More systematic approaches based, e.g., on theminimum
description lengthprinciple, can be found in [17]. Also, more flexible
multiscaleparameterizations can be applied in principle to deal with
more complexsurfaceprofiles, but this is outside thescope of thepresent
paper.

VI. CONCLUSION

In this communication, we have presented a novel inversion algo-
rithm for the reconstruction of moderately rough dielectric interfaces,
using space–time sparsely sampled reflected field data. The proposed

algorithm has been found to provide fast, accurate, and robust estima-
tions for moderate roughness (�4 cm maximum-to-minimum, max-
imum slopes 40

�), even for noisy data and with imperfect knowl-
edge of soil parameters. These results lay the foundation for the adap-
tive techniques for subsurface GPR image reconstruction of shallowly
buried plastic mine-like targets in the presence of rough air-soil inter-
faces addressed in [5]. Extensions presently under investigation include
generalization to fully three-dimensional geometries.
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