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data, suggesting the use of higher order statistics for modeling the radar Moderately Rough Dielectric Interface Profile

data. Reconstruction via Short-Pulse Quasi-Ray Gaussian Beams
It is thus evident, that based on the statistical properties of the radar

data for a realistic radar target as well as the 2-D images generatéfincenzo Galdi, Julia Pavlovich, W. Clem Karl, David A. Castafion,

using frequency and aspect data, regions exists that exhibit strong and Leopold B. Felsen

higher order statistics.

Abstract—A new technique for estimating the coarse-scale profile of a
[1l. CONCLUSION moderately rough interface between air and a homogeneous dielectric half-

) . . ce is presented. The proposed approach is based on space-time sparsely
The backscattered field of an Airbus A310 model was measured "3 impled reflected field observations and uses a quasi-ray Gaussian beam

compact range, and frequency data were used to investigate the stgfigforward model, coupled with a compact parameterization of the sur-

tical properties and dominant statistical dependency of measured rafdas profile in terms of B-splines, from which the profile estimation problem

data as a function of aspect angle. The results indicate that the usé @psed as a nonlinear optimization problem. Numerical experiments are

higher order statistics or second-order statistics in radar imaging Bjgsented to assess accuracy, reliability, and computational efficiency. The
ith t be done with care. Second-order statistics may be ugé) osed approac_h fmds applications in a_daptlve sche_mes for rough sur-

gorithms mus ' _ ay underground imaging of shallowly buried targets via ultra wide-band

most of the time, but the reader must be aware that in certain angled@und penetrating radars.

glon_s hlgherorder statistics must pe_con5|dere_d. Although, hlgherqrdelrhdex Terms—Gaussian beams (GBs), ground-penetrating radars

statistics has many advantages, it is not advisable to use only highgsR), rough surfaces, short pulses.

order statistics if most of the measured radar data indicate second-order

statistics. If multiple reflections and higher order interactions occur

over a specific aspect region, higher order statistics is preferred over |. INTRODUCTION

second-order statistics to analyze and model the measured radar daﬁ%-ground-penetrating radar (GPR) applications, the twice-traversed
Second-order statistics is likely to be preferred if the radar target is I§§$nown rough interface separating air and soil acts as a major
complex and produces minor multiple reflection and higher order intefg ,rce of clutter by distorting the interrogating signal on its way

actions A priori knowledge of the scattering mechanisms contributing, 44 from the targets of interest, and by generating complicated
to the backscattered field in a certain region is thus required to Kn@¥-kscattered field patterns which may obscure the useful signals.

the statistics to use in generating radar images. Physics-based modeling of such clutter, which could significantly
enhance the ultimate GPR performance, poses challenging problems
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b a first step toward understanding the wave physics governing a moder-
_ . ately rough interface, and will provide insights needed when addressing

receiver locations arelated class of real-world GPR configurations. At this stage of inves-

z=2z tigation, we ignore the presence of buried targets, which is dealt with

X, elsewhere [5]. Furthermore, we also neglecttbisy(incoherent) con-
\f tribution of finer-scale roughness, and focus on estimating the coarse

" pl(r)
B

7 scale roughness profile(«) from sparse reflected field observations.
4 X
o) | 7

Estimation of rough surfaces from inverse scattering data has
jected apert . ;
/{\ %E;Téegi:'crisgt?onure most available algorithms (see, e.g., [6]-[9]) have concentrated

received considerable attention during the past decade. However,
on conducting surfaces and time-harmonic excitation, and usually
require densely sampled measurements. In [10], we addressed this

h(g’;) problem for frequency-stepped sparse observations. This approach
‘ is extended here t@ulsed excitation. To proceed, thg-directed

reflected electric field is sampled &, time instants atV, fixed

' X . . : o
‘_f?'/z d/2 receiver locations:y, ..., x}, at the observation plane = =" in
X Fig. 1; theknown termin the problem is given by the set &f. x N
(£180,015 40 samples. In our numerical experiments in Section V, we shall use

synthetic field-observation data generated via a full-wave solution of

the forward scattering problem (see [4] for details).
Fig. 1. Problem geometry. An aperture-generated, quasiplane-wave,
amplitude-tapered TM-polarized pulsed field impinges from free space onto
a dielectric half-space with known relative permittivigy; and conductivity

o, bounded by a moderately rough interface pro#le = h(x). The  rpo fonyard scattering model, detailed in [4], is based on the
obliguely incident illumination is projected onto the horizontal aperture plal

atz = z,. The reflected field is sampled &/, time instants aiV,. fixed Rirchhoft Physical Optics (PO) approximation in conjunction with
receiver locationg}, ..., @} on the observation plane = z". the Gabor-based narrow-waisted pulsed beam (PB) discretization of

one-dimensional (1-D) aperture field distributions investigated in [11],

and is restricted to moderate roughness (both in height and slope) and
is built on recently developed Gabor-based narrow-waigteabi-ray  sjightly lossy soils.
Gaussian beam (GB) algorithms for short-pulse scattering from mod-The PO “equivalent current,” which generates the reflected field, is
erately rough dielectl’iC interfaces [4] By eXplOiting these fast fOrWaFﬁ*St parameterized in the frequency domain in terms dbmain dis-
models and a low-dimensional spline interface parameterization, Qetizedm-indexed Gabor basis functions with narrow widthcen-
gether with the (usually small) separation between the rough interfageed on the Gabor lattice points, = mL; these initial conditions
and the target, the pl’iOI’ surface estimation is posed as a nonlingéﬁerate narrow_waisted, quasi_ray’ Comp|ex_source_point GBs propa-
optimization problem through fitting the model-based prediction tgating along the local reflection directions. For Rayleigh (i.e., differ-
the availableearly-time observation data. The subsequent problemntiated Gaussian) pulses, the resulting time domain analytic Fourier
of quasi-deterministic compensation and underground imaging Vigersion integral can be approximated by rapidly computable closed
late-time response processing is addressed in a separate paper iz expressions, yielding the following approximate PO—PB expan-
with particular reference to shallowly buried plastic mine-like targetssion for they-directed reflected electric field” (see [4] for details)

lll. ROUGH SURFACE FORWARD SCATTERING MODEL

Il. STATEMENT OF THE PROBLEM Tty ~ Y b (et —tw) @)

We consider the two-dimensional (2-D) problem geometry sketched =720

in the(z, z) coordinate space of Fig. 1, where all quantities and fieldghere the Gabor expansion coefficiedts and the time delays,, are
are assumed to heindependent. A homogeneous dielectric half-spacgetermined approximately by sampling the PO equivalent current pro-
(soil) of knownrelative permittivitye.; and conductivityr, bounded file at the lattice points:,, = m L, and the PB propagatob§, are ex-
by a moderately rough interface with profite= %(x) is illuminated pressed in terms of rapidly computable confluent hypergeometric func-
by ay-directed (TM-polarized) pulsed well-collimated EM field, gentions [4, Sec. IV-B]. The approximate forward scattering model in (3)
erated by a large truncated aperture field distribution of wititht has been validated and calibrated over various parameter ranges against
z = z4. They-directed incident electric field' is assumed to be well g rigorous reference solution [4, Sect. V-A], and has been found to pro-
approximated by a pulsed truncated amplitude-tapered plane waveyide accurate and robust predictions for moderate roughness (both in
‘ height and slope), nongrazing incidence, and slightly lossy soils (see [4,
e'(r, t) ~ glag)p(t — ¢ ' z5) (1) Sec. V-C]for details). Numerical convergence is usually achieved with
d/L ~ 30 to 100 (narrow-waisted) PBs, resulting in minimal storage
wherer = (z, z), c is the free-space wavespeedt) is a short pulse requirements and typical computing times of 2 ms per space-time field
of lengthT <« d/c, and(zp, zp) are beam centered coordinates  sample on a 700-MHz PC. Moreover, for computing a number of field
time samples at fixed-receiver locations, as required in Section IV, one
[arB] _ [cos Oa sin 6 4 ] |:$ - m] @) can take advantage of the structure of the PB propagators in (3) (see
o ’ [4, Sec. IV-B] for details) to compute the time-independent parts only
once, with resulting typical computing times of 20 ms for exmtire
In (1) and (2)g(xr) is a spatial taper, whilé4 andx 4 denote the tilt 100-sample waveform, as compared with about 240 s required by our
angle of the radiated beam relative to thaxis and its spatial displace- full-wave reference solution. This light computational burden is essen-
ment, respectively. Parameters are chosen so that the illuminationtial- for the overall computational feasibility of the proposed surface
persto zero and vanishes fet > d/2 (Fig. 1). This synthetic model is estimation approach, with eventual application to subsurface imaging.

sinfa —cosfa Z—zZA
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IV. SURFACE PROFILE ESTIMATION content of the excitation field, and a multiresolutfoequency-hopping

. . L strategy [14] was devised to achieve the global optimization (see [10,
Due to the inherent ill-posedness of the surface estimation proble,gécl I11-C] for details). The same guidelines can be applied to the pulsed

itis necessary to resort tegularizationstrategies. Acknowledging the excitation of interest here, with the pulse lengZhnow playing the key
implicit limits of retrievable information through inverse scattering, oufgia |n particularshortpulses are desirable to enhance resolution and
regularization is based on a compact parameterization of the unknoz%%uracy in the reconstruction, but an exceedingly wide-band excita-
interface profile functiorh(x) in a suitable finite-dimensional Space.tion would most likely yield a highly nonconvex cost functional with
As in [10], we model:(x) using & quartic B-spline parameterization, .y |ocal minima, whose global minimization could become com-
[12] with fixed resolution matched to the coarse level of detail for thationally unfeasible. In our numerical investigation, we found that

reconstruction values ofcT" < 0.2d tend to produce undesired local minima in the
Np—1 cost functional, whereas fefl” = 0.5d, the achieved resolution dete-
hix) = Z h/,ls(4)(m — wmin 4 1AL, Poin < 1 < T riorates (se(_e Fig. 3). Moreover, for the eventua_ll undergrpund imaging
problem of interest (see [5]), it is also essential to achieve adequate
(4) soil penetration, and therefore operate at sufficiently low frequencies.
In principle, one could gain more flexibility by using different sets of
whereby the coefficients,, become theinknownof the problem. In pu|§e§ fo.r the surfape est!matlon (e.g., implementing muIFlresuntlon
7 : . : : optimization strategies as in [10]) and for the underground imaging, at
(4), s\ () is a standard quartic B-spline basis function [12] (see aI§ ) . .
g e expense of hardware complexity. However, in our numerical exper-

[10, eq. (5)]) with finite spatial suppoBRA ., whereA, = (Zmax — . . ;
Zmin)/Na denotes a scale parameter whose choice can be guide rBents, we found thatsinglepulse in the typical UWB GPR frequency

i i i ~ ] i ~ 3 [ —
possible prior information and refinetiaptively(see Section V). To ra|¥ge (.., as in Fig. 2(a) with . OJ‘d le.,T ~1.3ns _ford . :
i e ; m) can be used fdyothsurface estimatioandunderground imaging of
prevent ill-conditioning, it is crucial that the number of unknown pa

rameters to be retrieved does not substantially exceee tiaki- shallowly buried targets (see [5]), thus having the potential of yielding

mension of the observation data set. For the problem of interest here%gasonable tradeoff between the above contrasting requirements,

volving UWB pulsed excitation andose proximitysetup, quantifying

the essential information contained in the observed field as well as the V. NUMERICAL RESULTS

effect of utilized prior information, is not straightforward. However,

the number of unknowns in the inverse problem is strongly related toAS mentioned earlier, the needed reflected field-observation data in
the type of roughness, the adopted parameterization, the extent of@ewere simulated via a reliable full-wave reference solution of the
reconstruction interval, and the finer scales one is willing to negled@rward scattering problem, based on the time-harmonic multifilament
In this preliminary investigation, we ditbtattempt to addressptimal ~ current method in [15] and the fast Fourier transform (see [4, Sec. V-A]
strategies for profile parameterization and data acquisition. Instead, fRedetails). Forward predictions in (5) were generated via the PO-PB
pursued a morpragmaticapproach. Under our stated problem conditodel in (3) withd/L = 40 beams, for which the accuracy was pre-
tions, we obtained reasonably accurate and robust reconstructions, Wiinarily verified.

a reasonably small number of unknowrd$,( < 30), via an adaptive =~ We begin with a simplified configuration where we use as a tem-
strategy (see Section V). Using our PO-PB fast forward model in [4] Rfate for inversiorthe samespline model that was used fgenerating
conjunction with the spline interface profile parameterization in (4), tHe actual profile. In other words, we assungepriori knowledge of
well-posedness of the problem is restored by estimating the unknot¥§ scale parameteX.. in (4) (i.e., the number of B-spline basis func-
parameters viditting the model-based forward scattering predictiofions), and focus on retrieving the unknown coefficieftsonly. This

to the available observation data, i.e., minimizing a suitabke func- Somewhat unrealistic assumption will be removed subsequently via an

n=—4

tional. We use a simple least square formulation iterative adaptiveframework. In all simulations below, eosine-ta-
pered normally-incidengxcitation was used with(z) = cos(wz/d),
Nyp Ny 84+ = x4 = 0, and a single fourth-order Rayleigh pulse with =
J(h) =€ () —&"|* = Z va (epq — é;q)2 (5) 0.44 [Fig. 2(a)], which was found by trial and error to provide a good
p=1 g=1 compromise between resolution and smoothness of the cost functional.
An observation time windoZ;}*", T:°™"] with ¢T°™ = 0.3d and
where é;,, = ¢é"(r,, t,,) denotes they-directed reflected field T,§°ﬁ') = 0.8d,p=1,..., N., was used, so as to roughly gate out
observedat time t,, € [T, T\*/P] at receiver locations scattering contributions from possible targets buried deeper-tan
r, = (x,, 2") (Fig. 1), e,, = €'(r,, tpq; h) denotes the cor- cm below nominal groundz(= 0). The resulting cost functional in
respondingforward prediction for the surface profile coefficients (5) was minimized via the Polak—Ribiere version of the conjugate gra-
h = {h_4, ..., hx,—1}, and v, are normalization coefficients. dient (CG) algorithm (particularly suited for nonquadratic functions

Anticipating the possible presence of buried targets, dealt with in [§],3]). The needed gradient of was computed using a central differ-
the observation interva[§'1§°”), Té”ff)] are chosen so as to gate ougnce formula, resulting idV;, 48 functional evaluations (i.€2,NV; +8
the late-timeresponse (i.e., causal contributions from regions beyomsslutions of a forward scattering problen®;, + 4 being the number
a critical depth), in order to prevent any possible bias in the surfacEunknown spline coefficients in (4). Loosepriori knowledge was
profile estimation. exploited by using as an initial guess a flat interface at 0 (i.e.,

In general, the predictive forward mode€l (r;,, tpq;l_z) is a non- & = 0) and restricting the surface profile searchi® cm around it.
linear function of the coefficientd. Therefore, the cost functional in A typical reconstruction example is shown in Fig. 2(b). The sur-
(5) is generallynonconvexwith respect toh and may have multiple face profile realization was generated using the quartic-spline model
local minima which correspond tialse solutionsStandard descent- in (4) with random coefficients. Although no specific roughness model
based optimization techniques (e.g., conjugate gradient [13]) can ldady., Gaussian) was simulated, geometric and constitutive parameters
to falsely trapped solutions unless an accurate initial guess is availablere selected so as to mimic natural moderate roughness with max-
For the frequency-stepped configuration in [10], the smoothness of theum-to-minimum height~ 4 cm and maximum slope 32° for a
cost functional was found to be essentially dependent on the frequentass of realistic soils [16]. The reconstruction is reasonably accurate
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Fig. 2. Rough surface profile reconstruction. Geometry as in Fig. 1, g(th) = cos(wz/d),d = 1m,0, = 0,z, = 0,z, = 0.1 m. The rough

surface profile realization was randomly generated via the spline model in (4jewith= —0.55 m, ¢,,,., = 0.55 m, IN;,, = 16, so as to simulate typical
moderate roughness (maximum height 4 cm maximum-to-minimum, maximum slope 32°) for a class of realistic soilse(;, = 4, o; = 0.01 S/m).
For the surface profile estimation, the reflected field is sample®Wat= 11 receivers andV, = 50 time instants a&” = 0.3 m andm; = —0.5m,
—0.4m,...,05m,witheT'*") = 0.3d andeT'*//) = 0.8d,p = 1, ..., N,. Normalization coefficients in (5)y, = 1, p =1, ..., N,. ()

Fourth-order Rayleigh pulsed excitatigift) (cT" = 0.4d,i.e., T ~ 1.3 ns). (b) — Actual profile; - - - Reconstruction. (c) Corresponding cost functional in
(5) versus number of CG iterations.

throughout most of the interval, except near the edges of the illumi- 300 ’ : ‘ * '
nated region. The likely explanation for this loss of accuracy, also ob-
served in [10], is due to the weak illumination in these regions, which

is attributed to the aperture field (cosine) tapering but was required to 200
avoid numerical artifacts (edge effects). This order of accuracy was ob- —_
served in many numerical experiments, with numerical convergence of %
the minimization algorithm typically achieved within30 CG itera- 100

tions [see Fig. 2(c)], resulting in computing times-065 secs on a
700 MHz PC. No particular effort was made to fully optimize the nu- .
merical implementation. In this connection, significant speed-up can be Ot . = . . ]
expected through the use of more effective (e.g., analytic) approaches -1.0 05 00 05 1.0 15 20
to compute the gradient of the cost functional. o

The influence of the pulse lengtfT" in the smoothness of the costFig. 3. Parameters as in Fig. 2. R(_epresentative cuts of the cost functional in
functional in (5) is illustrated in Fig. 3, which shows representative cuigl); a_lor;)g {';Z‘?"_r‘?c_“_o_”.'Zq(?)fog":ggus valuesdl’. —cT' = 0.4d; - - -
of the cost functional for values e@fl'/d = 0.15, 0.4, and 0.55. The B -

cut direction in the: space is specified by 0.04 . , ,
he=(1-a)h., -1<a<? (6) 0031 1

—_ 0.02

whereh , indicates thectualvalue of the spline coefficient array, and g 0.01

« parameterizes the spanning, with= 0 and« = 1 corresponding to py

the actual interface and to the initial guess (flat interface=ato0, i.e., X 0.00

h = 0), respectively. Itis observed from Fig. 3 that in all cases, the cost < 0.1

functional exhibits a deeglobal minimum ata = 0. For the shortest -0.02

pulse ¢I' = 0.15d), however, it also has sonfecal minima and saddle

points. As the pulse length is increased (= 0.4d, 0.55d), the local '0'98,50 -0.|25 0.60 o,és 0.50

minima and saddle points are gradually wiped out, and the basin of X [m]

?ttr_acuon of the glOb‘jal mln!mum becomes larger and larger, thus _faqg%— . 4. Parameters as in Fig. 2. Surface profile reconstruction examples with
itating the global optimization via standard descent-based techniqu@ertain or corrupted data. — Actual profile; - - - Reconstruction witt0%
Exceedingly long pulses (e.g1 = 0.55d), however, tend to produce errorine,;, oq; «+« -« - Reconstruction with—10% error ine,.;, oy; - - -
rather flat global minima, with a consequent loss of resolution, and &econstruction with observation data corruptecdb$0% uniform noise.
possible bias in the position of the minimum due to inaccuracy in this
case of the (short-pulse asymptotic) PO—PB forward model. As alreadsed in Fig. 2, arrived at through trial and error compromising between
mentioned in Section IV, the best reconstruction results were obtairexturacy and computational burden, were found to yield (average) res-
for values ofeT" ~ 0.4d (asin Fig. 2); values of” < 0.2d were found olution on the order of 2 to 3 mm. Concerning the choice of the normal-
susceptible to yieldingalse solutionswhereas values ofl’ = 0.5d  ization coefficientsy, in the cost functional (5), the best reconstruction
were found to yielcpoorer resolution results (as in Fig. 2) were found faf, = 1, p = 1,..., N,. The
Concerning the choice of data size and receiver locations, the fikely explanation is that this choice helps de-emphasizing the effect of
rameters used are consistent with those typically encountered in rehé edge receivers, for which the scattered field predictions from our
istic UWB GPR systems. The algorithm was calibrated for observati®fO—PB forward model are somewhat less accurate.
heights:" ranging from 20 to 50 cm, number of receivers ranging from In order to assess the reliability of the surface profile estimation al-
51020 (i.e., receiver spacing ranging from 4 .6to 0.4\., with A. de- gorithm, we performed a number of sensitivity tests with respect to
noting the free-space wavelength at the center frequency of the pulgessible uncertainty in the prior knowledge, as well as corruption in
and number of sample¥; ranging from 20 to 200. The parameterghe observed data. Fig. 4 displays typical reconstructions obtained by
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Fig.5. Parameters asin Fig. 2. Example of iterative adaptive spline parameterization. (a): Reconstruction using a tentative initial coteseqEoarfé, —

6) and a flat interface initial guess (number of CG iteratiaég:; = 8; final value of cost functional7 ™*) = 70.4); (b), (c), (d): Refinements obtained by
progressively increasing the number of basis functid¥is, = 12, 18, 24, respectively, and using the previous stage reconstruction as initial ghkss &=
12, 12, 23, respectively,J(™*) = 26, 3.7, 0.53, respectively). — Actual profile; - - Reconstruction.

introducing at=10% error in the values of the soil parametersand algorithm has been found to provide fast, accurate, and robust estima-
a4 used in the forward scattering model, and by using observation détms for moderate roughness4 cm maximum-to-minimum, max-
corrupted byt10% uniform noise. As one can see, the surface estimaum slopes<40°), even for noisy data and with imperfect knowl-
tion algorithm turns out to be remarkably robust. edge of soil parameters. These results lay the foundation for the adap-

Finally, to remove the unrealistic perfectly-matched-template asve techniques for subsurface GPR image reconstruction of shallowly
sumption, we now invoke an adaptive iterative framework for estimatitmiried plastic mine-like targets in the presence of rough air-soil inter-
the surface profile in Fig. 2(b), which was generated via the B-splifiaces addressed in [5]. Extensions presently under investigation include
modelin (4) withN;, = 16, by postulating anismatchedplinetemplate generalization to fully three-dimensional geometries.
(i.e.,N, # 16). Referringto Fig. 5, the procedure is started with a tenta-
tiveinitial coarse parameterizatioN{, = 6) andthe usualflat-interface
(¢ = 0)initial guess for the profile, which leads to the corresponding REFERENCES
gross-scale reconstruction in Fig. 5(a). The resolution is gradually[1] T. Dogaru, L. Collins, and L. Carin, “ Optimal time-domain detection of
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