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Abstract: This review deals with the utility, scope, performance,
and range of validity of the discretized Gabor-based, quasi-ray,
narrow-waisted (NW) Gaussian beam (GB) algorithm for the an-
alysis and synthesis of high frequency time-harmonic as well as
short-pulse transient electromagnetic wavefields in the presence
of complex propagation and scattering environments. Restricting
attention here primarily to two-dimensional (2-D) fields and phys-
ical configurations, applications include phased and focused trun-
cated plane-aperture-generated illumination of layered dielectrics,
moderately rough air-soil interfaces, and buried objects in rough-
surface-bounded halfspaces in forward scattering scenarios, as well
as rough interface profile reconstruction and buried-target imag-
ing from sparse data in inverse scattering scenarios. The role of
the Gabor-based NW-GB algorithm as a computationally efficient
physically incisive analytic forward solver in these applications is
emphasized. Current status is reviewed and assessed in detail, with
brief discussion of plans for future extensions, and of recently de-
veloped alternative methodologies.

Keywords: Gaussian beams, Gabor discretization, Propagation,
Forward scattering, Inverse scattering

1. Introduction

The objective, scope, and range of applications in this re-
view of the Gabor-based, quasi-ray, narrow-waisted (NW)
Gaussian beam (GB) algorithm for the representation of
(primarily) two-dimensional (2-D) electromagnetic (EM)
wavefields generated by time-harmonic high frequency as
well as short-pulse transient excitations from rather gen-
eral truncated plane 1-D aperture field distributions in
the presence of 2-D complex propagating and scattering
environments has been summarized in the abstract, and
need not be repeated here. Instead, we procede directly
to the structure of the paper. The presentation is divided
into three principal sections: Sect. 2: Forward Scattering;
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Sect. 3: Inverse Scattering; Sect. 4: Current and Planned
Investigations, and Alternative Approaches.

Section 2 is the most comprehensive, and contains four
subsections, 2.1, 2.2, 2.3, 2.4, each of which is divided
into two parts: 1. Frequency domain (FD); 2. Time do-
main (TD). The four subsections are entitled: 2.1. Plane-
Aperture Radiation; 2.2. Transmission/Reflection Due to
Layered Dielectrics; 2.3. Transmission/Reflection Due
to Moderately Rough Dielectric Interfaces; 2.4. Scat-
tering by Objects Embedded Below Moderately Rough
Dielectric Interfaces. Section 2.1 is the “driver” that pro-
vides both the rigorously phrased Kirchhoff-integral and
the approximate Gabor NW-GB discretized expansions
for the 2-D incident fields that illuminate the 2-D en-
vironments in Sects. 2.2, 2.3, 2.4. The Gabor lattice in
the (spatial)-(wavenumber spectral) phase space, which
parameterizes the 1-D aperture field and thereby the ra-
diated 2-D GB propagators, is introduced at this stage,
together with its special properties in the NW-ray-like
regime that permits evaluation of the formally messy
Gabor amplitude coefficients by mere sampling of the
aperture profile at the lattice points within the aper-
ture domain; the tight spatial packing under NW con-
ditions gives rise to wide spectral spacing (i.e., large
“tilt” intervals) due to the Gabor spatial-spectral trade-
off, which drives all tilted beams away from the aper-
ture into the evanescent range. Thus, the NW-GB syn-
thesis of the radiated field involves only an aperture-
filling finite series of propagating beams, even for the
phased aperture distributions. The NW-GB expansions
for the wavefield environmental encounters in Sects. 2.2,
2.3, 2.4 are synthesized very efficiently by “quasi-ray”
tracking of each incident nontilted basis beam through
the environment and combining at the observer; the
slightly complex quasi-ray propagators do not encounter
the failures of real ray fields in transition regions. For
each application, the validity of the NW-GB synthe-
sized fields is assumed to be established through the
“scrambling” criterion, which regards the synthesis as
stabilized when finer samplings (i.e., more beams with
narrower waists) do not alter the result. Each such appli-
cation has to be validated independently by comparison
with brute-force computationally intensive reference so-
lutions, thereby establishing its range of applicability.
Concerning the FD vs. TD regimes, we usually start
with the FD and access the short-pulse TD by “ana-
lytic” inversion from the FD, with efforts to structure
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the pulse spectrum in such a way as to admit approx-
imate closed forms for the TD NW pulsed beam (PB)
wavepackets; the analytic (positive frequency) transform
accommodates the weakly evanescent spectra of the
NW-GBs. Each application is accompanied by a com-
pact analytic portion which deals with the relevant basis
beam tracking algorithms, and by a typical numerical
example that shows the performance capabilities of the
GB synthesis for the specified “sufficient” number of
beams.

The inverse scenarios in Sect. 3 involve: 3.1. Overall
Problem Strategy; 3.2. Reconstruction of the Moderately
Rough Dielectric Interface Profile; 3.3. Imaging of Targets
Buried Below the Moderately Rough Dielectric Interface.
The inversion strategies are structured around the corres-
ponding NW-GB discretizations in Sect. 2 as noted earlier.
Section 4 deals in brief summary form with current and
planned extensions of the NW-GB algorithms to full 3-
D geometries; alternative methodologies, not based on
Gabor discretization, are also given attention. Section 5
contains brief conclusions.

Concerning notation, bold face symbols denote vec-
tor quantities; light face symbols denote scalar quantities;
capital letter fields are set in the FD; lower-case-letter
fields are set in the TD; a tilde ∼ superscript on a quan-
tity denotes its extension into a complex coordinate space;
superscript + denotes the analytic temporal Fourier trans-
form (FT); the caret ^ denotes plane-wave spectral do-
main functions. Frequently used abbreviations through-
out the paper are: GB = Gaussian beam; NW = narrow-
waisted; PB = pulsed beam; CSP = complex source point;
FD = frequency domain; TD = time domain; TM = trans-
verse magnetic; PO = physical optics; GPR = ground
penetrating radar; TV = total variation; CE = curve
evolution.

2. Forward scattering

2.1 Plane-aperture radiation

2.1.1 Frequency domain

Consider a two-dimensional problem where a y−directed
electric field with implicit time-harmonic dependence
exp(−iωt) and spatial distribution F(x) is assumed to oc-
cupy the aperture region |x| ≤ d/2 at z = 0, as depicted in
Fig. 1,

Ey(x, z = 0) = F(x), |x| ≤ d/2 . (1)

The resulting EM field radiated into the halfspace z > 0
can be expressed as a superposition of line-source-
generated fields (Kirchhoff integration) [1]

Ey(r) = −2
∂

∂z

d/2∫
−d/2

F(x ′)G2D
(
r; r′

0; k0
)
dx ′ , (2)

Fig. 1. Problem geometry pertaining to Sect. 2.1: frequency or
time domain. A wavefield emanates from an extended truncated
aperture field distribution at z = 0.

where r ≡ (x, z); r′
0 ≡ (x ′, 0) denotes points on the

aperture plane, k0 = ω
√

ε0µ0 = 2π/λ0 is the free-space
wavenumber, λ0 is the free-space wavelength, and G2D is
the FD 2-D Green’s function

G2D
(
r; r′; k0

) = i

4
H (1)

0

(
k0|r− r′|) , (3)

with H (1)
0 (·) denoting the zeroth order Hankel function of

the first kind [2]. Alternatively, by spectral plane wave su-
perposition, one obtains [1]

Ey(r) = 1

2π

∞∫
−∞

F̂(kx) exp
[
i (kxx + kzz)

]
dkx , (4)

where

F̂(kx) =
∞∫

−∞
F(x) exp(−ikxx)dx (5)

is the Fourier plane-wave spectrum of F(x), kx is the x-
domain wavenumber, and

kz =
√

k2
0 − k2

x, Im(kz) ≥ 0 , (6)

is the longitudinal (z-domain) wavenumber.
The aperture field F(x) is to be parameterized in

terms of Gaussian basis functions via the rigorous self-
consistent Gabor series representation [3–5]

F(x) =
∞∑

m,n=−∞
Amnw(x −mLx) exp(inβxx) ,

Lxβx = 2π ,

(7)
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where w(x) represents the normalized Gaussian window
function

w(x) =
(√

2

Lx

)1/2

exp
[−π(x/Lx)

2] ,

∞∫
−∞

w2(x)dx = 1 ,

(8)

and spatial/spectral periods are related by the self-
consistency condition (configuration-spectrum tradeoff)
in the second equation of (7) [3]. The representation in
(7) places the aperture distribution on a discretized (x, kx)
phase space lattice (see Fig. 2), with spatial/spectral shifts
tagged by the indexes m and n, respectively. The ini-
tial windowed distribution surrounding each lattice point
in Fig. 2 generates a Gaussian beam (GB) which is
launched from m-indexed locations and tilted according
to n-indexed locations. The radiated incident field in the
halfspace z > 0 (see (2)) therefore admits via (7) a similar
discretized representation,

Ey(r) =
∞∑

m,n=−∞
Amn Bmn(r) , (9)

where the beam functions Bmn(r) in the paraxial far zone
can be expressed via the following complex source point
(CSP) approximation [6, 7]

Bmn(r) ∼B̃mn(r) = −ik025/4
(

Lx

8πk0

)1/2

× exp
{
i
[
k0
(
R̃mn + ib

)+π/4
]}

×
(
z − z̃′

mn

)
R̃3/2

mn

, (10)

with R̃mn =
√(

x − x̃ ′
mn

)2 + (
z − z̃′

mn

)2
, Re

(
R̃mn

) ≥ 0,
representing the complex distance between the observer at
r = (x, z)and thecomplexsourcepoint r̃′

mn = (
x̃ ′

mn, z̃′
mn

)=

Fig. 2. Discretized Gabor phase space lattice. Spatial shift in-
dexes m identify Gaussian beam (GB) launch points xm = mLx ,
m = 0,±1, . . . Spectral shift indexes n identify linearly-phased
GB tilts at kxn = nβx , n = 0,±1, . . . Self-consistency condition:
Lxβx = 2π.

(mLx + ib sin θn, ib cos θn). The tilde ∼ identifies CSP-
generated complex quantities, and the displacement pa-
rameter b (equal to the Fresnel length) is related to the
beam lattice period Lx and the beam axis tilt angle θn
via [6],

b = (Lx cos θn)
2/λ0 � R̃mn ,

θn = sin−1(nλ0/Lx) .

(11)

The Gabor GBs propagate when |n| < Lx/λ0 (θn real)
but decay away from the aperture when |n| > Lx/λ0 (θn
complex). For nontilted (n = 0) narrow-waisted (NW)
beams (Lx � λ0 � d), the Gabor coefficients Amn in
(9), which may be evaluated exactly by time-consuming
integration [3, 4], can be estimated effectively in the
NW-GB “far zone” away from the aperture by sampling
the aperture field distribution F(x) at the lattice points
xm = mLx [6, 7],

Amn ≈


(
Lx/

√
2
)1/2

F(xm), n = 0 ,

0, n 
= 0 .

(12)

The tilted (n 
= 0) beams, which here generate evanescent
“far fields” away from the aperture (complex θn in (11)),
are ignored. The waist of the propagating NW-CSP beams
in the aperture plane is approximately equal to Lx . Since
the CSP paraxial far zone approximation (10) can be in-
voked at moderate distance, the NW beam superposition
can furnish accurate results even in the near zone of the
aperture.

As shown in [8], more effective implementations can
be obtained through the use of propagation-matched NW-
beams. For instance, in the presence of a linearly phased
aperture,

F(x) = g(x) exp (ik0x sin θA) , (13)

where g(x) is a real function and θA denotes a (real) tilt
angle (Fig. 1), a more effective NW-GB discretization is
given by (see [8] for details)

Ey(r) ≈
∑

|m|≤(d/2Lx )

CmB̃m(r), (14)

where, for simplicity, the subscript “m0” is replaced by
“m”, and

Cm = (
Lx/

√
2
)1/2

g(xm), |m| ≤ (d/2Lx) , (15)

B̃m(r) = − ik025/4
(

Lx

8πk0

)1/2

exp (iπ/4)

× exp
[
ik0

(
R̃m + xm sin θA + ib

)]
× (z − ib cosθA)

R̃3/2
m

, (16)
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R̃m =
√

(x−xm−ib sin θA)2+(z−ib cosθA)2 , (17)

b = (Lx cos θA)2/λ0 . (18)

The beam propagator in (16) differs from B̃m0 in (10)
by the phase shift (ik0xm sin θA) and by the different def-
initions of R̃m and b in (17), (18), respectively, which
produce the propagation-matched tilt θA in the beam di-
rection (see Fig. 1). For numerical validation of the above
tilted beam synthesis, we consider the linearly phased dis-
tribution (13) with cosine tapering

g(x) =
{

cos(πx/d), |x| ≤ d/2 ,

0, |x| > d/2 ,
(19)

with θA = 30o, and a fixed beam lattice period (Lx = 0.1d,
i.e., ten beams). In Fig. 3, the near-zone field synthesized
via (14) with a fixed number of NW tilted beams is com-
pared with the reference solution (brute force Kirchhoff
integration in (2)). The beam synthesis is hardly distin-
guishable from the reference solution. The stated number
of beams in these simulations was arrived at via the prag-
matic “scramblings” test, i.e., when the result remains
insensitive to variations in the beam/lattice combinations,
as noted in Sect. 1. Note that in order to achieve compa-
rable accuracy using nontilted beams, about ten times as
many such beams would be required.

2.1.2 Time domain

To perform the inversion from the frequency domain (FD)
to the time domain (TD), we need both the ordinary and
the analytic Fourier transforms (FTs) (see discussion in

Fig. 3. Linearly phased cosine-tapered aperture distribution in
(13), (19) (d = 10λ0, θA = 30◦) (see Fig. 1). Near-zone (z = 5λ0)
radiated field synthesized via narrow-waisted tilted beams is com-
pared with the reference solution (Kirchhoff integration in (2)).
—– Reference solution; - - - Tilted beam synthesis (Lx = 0.1d, i.e.,
ten beams). Both solutions coincide on the scale of these plots.

Sect. 1). The ordinary FT pair is given by

v(t) = 1

2π

∞∫
−∞

V(ω) exp(−iωt)dω ,

V(ω) =
∞∫

−∞
v(t) exp(iωt)dt ,

(20)

while the analytic FT
+
v (t) is given by

+
v (t) = 1

π

∞∫
0

V(ω) exp(−iωt)dω, Im(t) ≤ 0 , (21)

where V(ω) is the conventional FT of the real signal v(t)
(see (20)). The real signal for real t is recovered via

v(t) = Re
[+
v (t)

]
. (22)

Referring to Sect. 2.1.1 and Fig. 1, we now determine
the TM-polarized incident field ey(r, t) in the halfspace
z > 0, generated by a linear-delay pulsed aperture field
distribution ey(x, z = 0, t) of width d at z = 0, which cor-
responds to the Fourier-inverted frequency domain (FD)
aperture field in (13), and has the form

ey(x, z = 0, t)

=



g(x)p(t − c−1
0 x sin θA), |x| ≤ d/2 ,

0, |x| > d/2 ,
(23)

where p(t) is a pulse of length T � d/c0, with c0 repre-
senting the free-space wavespeed, g(x) is the amplitude
profile, and θA is the tilt angle (Fig. 1). The radiated
field in z > 0 is obtained by Fourier inversion of the
Kirchhoff integral in (2), weighted by the pulse spec-
trum P(ω) corresponding to p(t). To obtain the Gabor PB
expansion of the radiated TD field, the complex source
point (CSP) high-frequency paraxial far zone FD NW-
GB expansion in (14), weighted by the pulse spectrum
P(ω), needs to be inverted to the TD. Recalling the ef-
fective treatment of linear phasing in Sect. 2.1.1, we
use here linearly-phase-matched tilted beams (cf. (14)–
(18)) instead of the nontilted beams in (10)–(12). We
choose the Rayleigh (differentiated Gaussian) pulsed
excitation,

p(t) = P0
d j

dt j
exp

[
−
(

t − T/2

ςT

)2
]

, (24)

where P0 is a normalization constant, and the variance
ς is chosen so that the pulse width of p(t) is ∼ T . For
this class of pulses, subject to constraints noted later on,
the resulting TD analytic Fourier inversion integral can be
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approximated by rapidly computable closed form expres-
sions. We found the following pulsed beam (PB) expan-
sion for the radiated field excited by the aperture field in
(23) (see [8, 9] for details)

ey(r, t) ∼
∑

|m|≤(d/2Lx )

ambm(r, t) ,

r = (x, z), am =
(

Lx√
2

)1/2

g(xm) .

(25)

As in the FD, the TD Gabor expansion coefficients am
in (25) have been approximated by sampling the profile
function g(x) in (23) at the lattice points xm = mLx . The
PB propagator in (25) is given by

bm(r, t) = Re
{
(−i) jβm

[
TmΓ

(
3 +2 j

4

)

×M( j)
1

(
t̄m
Tm

)
−2i t̄mΓ

(
5 +2 j

4

)

× M( j)
2

(
t̄m
Tm

)]}
, (26)

where Γ(·) is the gamma function [2], and

M( j)
1 (t) = 1F1

(
3 +2 j

4
,

1

2
,−t2

)
,

M( j)
2 (t) = 1F1

(
5 +2 j

4
,

3

2
,−t2

)
,

(27)

with 1F1(µ, ν, t) denoting the Kummer confluent hyperge-
ometric function [2]. The functions M( j)

1,2 can be computed
efficiently using the rapidly converging expansions in [9].
Moreover,

βm = 2 j+1/2π−1/2(Tm)− j−5/2Λm P0ςT , (28)

t̄m = t − τm − T/2, Tm =
√

T 2
m +ς2T 2 , (29)

τm = c−1
0 (Rm + xm sin θA) , (30)

Tm = Lx cos θA

c0

[
2

π

(
1−zbm

Rm

)]1/2

, (31)

Λm = −i25/4

√
Lx

8πc0
z R−3/2

m exp(iπ/4) , (32)

Rm =
√

x2
bm + z2

bm , (33)

and (xbm, zbm) are beam-centered coordinates (Fig. 1),

[
xbm
zbm

]
=
[

cos θA − sin θA
sin θA cos θA

] [
x − xm

z

]
. (34)

The propagator in (26) is a Gaussian PB wavepacket,
whose collimation is controlled by the discretization
period Lx . The constraints arising from the various ap-
proximations employed in the analysis can be formalized
in terms of a nondimensional critical estimator which con-
tains certain relevant problem parameters (see [8, 9] for
details),

Q ≡ N−1
b

√
κ(cos θA)3

χ
� 1 . (35)

Here, the integer Nb = d/Lx represents the number of
beams in the expansion (25), κ = ΩT/2π (with Ω denot-
ing the pulse effetive bandwidth), and χ = z/Fd is the
distance to the observation plane scaled by the Fresnel
distance of the aperture, Fd = d2/(c0T ). The nondimen-
sional estimator Q in (35) shows how changes in one
parameter can be compensated by corresponding changes
in the other parameters so as to remain in the legitimized
range. For example, at larger observation distances z,
fewer beams are required.

For illustration of the performance of the NW-PB al-
gorithm in (25), we show results for the TD counterpart
of the cosine-tapered linearly phased FD aperture pro-
file in (13) and (19). The exciting (fourth-order) Rayleigh
pulse and its FD spectrum are shown in Fig. 4. The ra-
diated field is shown and validated in the plots of Fig. 5,
for test conditions which are detailed in the figure cap-
tion. The constraints pertaining to these results meet the
nondimensional estimator criterion in (35). The reference
solution used in these examples is a brute-force space-
time Kirchhoff integration [8]. To better quantify the accu-

Fig. 4. Fourth-order Rayleigh pulse. (a): Temporal profile in (24).
(b): Spectrum (magnitude). Parameters: j = 4, P0 = T4/30 000,
ς = 1/

√
50.
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Fig. 5. Radiated field due to the pulsed linear-delay (θA =
30◦) cosine-tapered aperture distribution in Fig. 4. Parameters:
c0T = 0.5, d = 5 = 10c0T (arbitrary units). Observation points
for the temporal profiles are located on the tilted beam axis θA.
(a): Temporal profile at x = 2.89, z = 5 = 0.1Fd (arbitrary units),
25 beams (Q = 0.26, ∆ey = −32 dB; see (35), (36)); (b): Spatial
transverse profile at z = 5, c0t = 6.05, 25 beams (Q = 0.26); (c):
Temporal profile at x = 28.9, z = 50 = Fd , 8 beams (Q = 0.25,
∆ey = −33 dB); (d): Spatial transverse profile at z = 50, c0t = 58,
8 beams (Q = 0.25). Reference solutions (solid curves) and
beam solutions (dashed curves) coincide on the scale of the
plots.

racy of the NW-PB approach, we have computed the r.m.s.
error

∆ey =

∞∫
−∞

∣∣∣e(ref )
y − e(beam)

y

∣∣∣2 dt

[ ∞∫
−∞

∣∣∣e(ref )
y

∣∣∣2 dt
∞∫

−∞

∣∣∣e(beam)
y

∣∣∣2 dt

]1/2 (36)

at various observation points r; values are displayed in
the Fig. 5 caption (note the pulse distortion, due to near-
zone/far-zone transition, at the Fresnel length Fd). Quan-
titatively, values of Q ≈ 0.3 (see (35)) were found to yield
r.m.s. errors ∆ey < −30 dB.

2.2 Transmission/reflection due to layered dielectrics

Prototype studies have been conducted in the FD for
plane [6] and circular cylindrical [7] dielectric layers, and
in the TD for plane layers [9]. Because there are no results
so far for TD excitation of a cylindrical layer, our presen-
tation here deals only with the planar case. The problem
geometry is shown in Fig. 6. An infinite plane weakly dis-
persive dielectric layer with lower interface at z = zL has
thickness d1, relative permittivity εr1, and electrical con-
ductivity σ1. Both εr1 and σ1 are assumed to be frequency
independent, and attention is restricted to slightly lossy
layers, i.e., σ1/(ωε0εr1) � 1.

Fig. 6. Problem geometry pertaining to Sect. 2.2: a large truncated
aperture field distribution of width d, with space-time dependence
f(x, t) and temporal spectrum F(x, ω), radiates in the presence of
a homogeneous weakly dispersive dielectric layer of thickness d1,
with relative dielectric permittivity εr1 and electrical conductivity
σ1. The field is observed in the half-space z > zL +d1. The numer-
ical simulations in Sect. 2.2.2 have been carried out for zL = 0.

2.2.1 Frequency domain

As stated in Sect. 1, the layer-transmitted/reflected fields
excited by the NW-GB-discretized incident field in (9) are
obtained by efficient quasi-real ray tracing implemented
through paraxial beam shooting. Basically, a single multi-
hop GB is tracked along its real-ray axis via conventional
real ray tracing; the slightly complex NW-GB spectrum of
the emerging GB is accounted for approximately through
augmentation of its on-axis (real ray) value by a com-
plex phase correction in the perpendicular distance from
the axis to the off-axis observer [6]. The reader is re-
ferred to [6] for validation, calibration and performance
assessment of the algorithm pertaining to the fields ex-
cited by linearly and quadratically phased (focusing) aper-
ture field distributions; transmission of the latter through
the layer poses a problem of substantial complexity. In [9],
a slightly different, though similar in spirit, FD approx-
imation was developed, which facilitates subsequent an-
alytic Fourier inversion to the TD (see Sect. 2.2.2). We
consider aperture field distributions

F(x, ω) = g(x) exp [ik0φ(x)] ,

φ(x) = x sin θA +φNL(x) ,
(37)

where g(x) is a spatial tapering function, and φ(x) is
a general nonlinear phase function, which is conveniently
split into a linear part x sin θA (θA real) plus a nonlinear re-
mainder φNL (x). Also in this case, we use linearly-phase-
matched tilted beams (cf. (14)–(18)) to parameterize the
linear phasing more effectively. Referring to [9] for de-
tails, the y-directed layer-transmitted field Et

y in the half-
space z > zL +d1 is discretized approximately in terms of
tilted NW-GBs as

Et
y(r) ∼ (

1 −R2
1A

)
×

∑
|m|≤d/(2Lx )

Am

Nq∑
q=0

R2q
1AB̃(q)

m (r) , (38)
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where r = (x, z), B̃(q)
m are the GB propagators, and the

(Gabor) expansion coefficients Am are obtained approxi-
mately as in (12), i.e., by sampling the phased aperture
field distribution at the Gabor lattice points,

Am ∼ (
Lx/

√
2
)1/2

F(xm) exp(−ik0xm sin θA)

= (
Lx/

√
2
)1/2

g(xm) exp [ik0φNL (xm)] ,

|m| ≤ (d/2Lx) . (39)

In (38), R1A represents the plane-wave TM Fresnel reflec-
tion coefficient

R1A = cos θA −√
εr1 − sin2 θA

cos θA +√
εr1 − sin2 θA

, (40)

and the q-index tags roundtrip reflections inside the
dielectric layer (i.e., 2q individual reflections at each
layer interface), with Nq denoting the total number
of roundtrips retained. Apart from the explicit inter-
nal roundtrip reflection coefficient factor R2q

1A in (38),
the GB propagator represents the wavefield contribu-
tion, at the observer, due to the m-th basis GB, after
undergoing q internal roundtrip reflections, and is given
by [9]

B̃(q)
m (r) ∼ − i25/4(z − z̃ fq

)√ k0Lx

8π R̃3
fmq

× exp
[
i
(
k0ψ̃mq +π/4

)]
, (41)

where

ψ̃mq = R̃ fmq + xm sin θA + ib

+
(1 +2q)

(
ε
(e)
r1 cos2 θt − cos2 θA

)
d1√

ε
(e)
r1 cos3 θt

, (42)

ε
(e)
r1 = εr1 + i

σ1

ωε0
, (43)

and R̃fmq represents the complex distance between the
observation point at (x, z) and the complex virtual focus
r̃ fmq ≡ (

x̃ fmq, z̃ fq
)

(see Fig. 7),

R̃ fmq =
√

(x − x̃ fmq)2 + (z − z̃ fq)2,

Re(R̃ fmq) ≥ 0 ,

(44)

x̃ fmq = xm + ib sin θA + (1 +2q)d1√
ε
(e)
r1 cos3 θt

·
(√

ε
(e)
r1 sin θt cos2 θt − sin θA cos2 θA

)
, (45)

Fig. 7. Schematic interpretation of the quasi-real ray-tracing
scheme pertaining to transmission of a single NW-CSP beam
through the layer (cf. (41)). A complex ray is traced from the CSP
at r̃′

m along a complex trajectory to the intersection of the real
beam axis with the real layer (lower) interface; the path into the
layer proceeds entirely in real space along the beam axis, under-
going q roundtrip reflections inside the dielectric layer. The last
segment, which reaches the observer, proceeds in complex space as
a complex ray emanating from the complex virtual focus r̃ fmq . In
real configuration space, these complex rays describe NW paraxial
Gaussian beams. White arrows denote complex rays; black arrows
denote real rays; “◦” denotes the locations of the complex source
points r̃′

m and the complex virtual foci r̃ fmq ≡ (x̃ fmq, z̃ fq) in (45)
and (46). The beam coordinates (xbmq, zbmq) are sketched in the
inset.

z̃ fq = d1 + ib cosθA − (1 +2q)d1 cos3 θA√
ε
(e)
r1 cos3 θt

. (46)

In (41)–(46), the transmission angle θt is related to θA via
Snell’s law, whereas b is the GB-CSP displacement pa-
rameter (Fresnel length) in (18). Referring to Fig. 7, the
approximation in (41)–(46) corresponds to tracing a ray
along a complex trajectory (white arrow) from the CSP
at r̃′

m to the intersection of the real beam axis with the
real layer (lower) interface; from there, the path into the
layer proceeds entirely in real configuration space, along
the beam axis, undergoing q roundtrip reflections between
the layer boundaries (black arrows). The last segment,
which reaches the observer, proceeds in complex space,
as a complex ray (white arrows) emanating from the com-
plex virtual focus r̃ fmq . In real configuration space, these
complex rays describe NW paraxial GBs. The results in
(38)–(46) set the stage for the analytic TD inversion de-
scribed below.

2.2.2 Time domain

The desired transient y-directed electric field et
y(r, t)

transmitted through the planar dielectric layer in Fig. 6 is
excited by the TM-polarized aperture field ei

y(x, z = 0, t)
as in (23), with space-time distribution f(x, t) (which
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is the Fourier inversion of the FD distribution in (37)
weighted by the spectrum P(ω) of the pulse p(t) (see
Sect. 2.1.2)),

f(x, t) = g(x)p
[
t − c−1

0 φ(x)
]

, (47)

with φ(x) defined in (37). The PB synthesis of the layer-
transmitted wavefield et

y(r, t) into the halfspace z > zL +
d1 is obtained via analytic Fourier inversion (cf. (21) and
(22)) of the corresponding Gabor-based FD-GB synthesis
in (38) [9],

et
y(r, t) ∼

(
1 − R̄2

1A

)

·
∑

|m|≤(d/2Lx )

am

Nq∑
q=0

R̄
2q
1Ab(q)

m (r, t − tm) , (48)

where r = (x, z), and b(q)
m are the PB propagators weighted

by the plane-wave TM Fresnel reflection coefficients in
(40); the amplitude coefficients am and time delays tm are
obtained by sampling the aperture field distribution am-
plitude and nonlinear phasing, respectively, in (47) at the
lattice points xm = mLx ,

am = (
Lx/

√
2
)1/2

g(xm), tm = φNL (xm)/c0 . (49)

For Rayleigh pulses as in (24) and slight losses, fol-
lowing the same procedure as in Sect. 2.1.2, one obtains
a closed-form expression for the PB propagators b(q)

m for-
mally analogous to that in (26) [9]

b(q)
m (r, t) = Re

{
(−i) jβmq

[
TmqΓ

(
3 +2 j

4

)

×M( j)
1

(
t̄mq

Tmq

)
−2i t̄mqΓ

(
5 +2 j

4

)

× M( j)
2

(
t̄mq

Tmq

)]}
, (50)

with the special functions M( j)
1,2 defined in (27). Moreover,

βmq = 2 j+1/2π−1/2(Tmq)
− j−5/2Λmq P0ςT , (51)

t̄mq = t − τmq − T/2, Tmq =
√

T 2
mq +ς2T 2 , (52)

τmq = c−1
0

[
Rfmq + xm sin θA

+ (1 +2q)
(
εr1 cos2 θt − cos2 θA

)
d1√

εr1 cos3 θt

]
, (53)

Tmq = Lx cos θA

c0

[
2

π

(
1 − zbmq

Rfmq

)]1/2

, (54)

Λmq = − i25/4

√
Lx

8πc0
(z − z fq)R−3/2

fmq

× exp(−κ1 RLq + iπ/4) , (55)

κ1 = σ1

2c1ε0εr1
, RLq = (1 +2q)d1/ cos θt , (56)

θt = sin−1 (sin θA/
√

εr1
)

, (57)

Rfmq =
√

(x − xfmq)2 + (z − z fq)2 , (58)

x fmq = xm + (1 +2q)d1√
εr1 cos3 θt

× (√
εr1 sin θt cos2 θt − sin θA cos2 θA

)
, (59)

z fq = d1 − (1 +2q)d1 cos3 θA√
εr1 cos3 θt

. (60)

In (56), c1 = c0/
√

εr1 denotes the wavespeed in the dielec-
tric layer. As for the free-space propagation, it is possible
to formalize certain constraints arising from the various
approximations in terms of a nondimensional estimator,
which is formally identical to that in (35) with χ = (z −
d1)/Fd , (see [9] for details).

We have selected the example in Fig. 8, involving
a Gaussian-tapered aperture field distribution with linear
and quadratic delay

g(x) = exp
(−αx2/d2

)
,

φ(x) = x sin θA −βx2, β > 0 ,

(61)

which generates a tilted focusing Gaussian beam; the pa-
rameter α is chosen such that the initial distribution tapers
to zero for |x| > d/2, with L f = d1 + 1/(2β) denoting
the distance from the aperture to the location of substan-
tial focusing (focal plane) of the layer-transmitted field.
The problem parameters are listed in the figure caption.
The reference solution is based on brute-force integra-
tion of the exact FD spectral (plane wave) representa-
tion and use of the inverse fast Fourier transform (FFT)
(see [9]). In Fig. 8a, the comparison between the PB syn-
thesis and the reference solution at a fixed observation
point on the focal plane shows excellent agreement. Note
the pulse distortion during passage through the focal plane
(see also Fig. 5c). The convergence, in terms of the nor-
malized r.m.s. error ∆ey (cf. (36)), with respect to Q in
(35) and the number of internal roundtrip reflections Nq
is illustrated in Figs. 8b and 8c, respectively. In [9, 10],
results are presented and discussed from an extensive se-
ries of numerical simulations, involving various aperture
field distributions and parameter combinations. Overall,



92 L. B. Felsen, V. Galdi: Aperture-Radiated Electromagnetic Field Synthesis . . .

Fig. 8. Geometry as in Fig. 6, with d = 1 (arbitrary units), c0T = 0.1d, zL = 0, d1 = 0.5c1T , εr1 = 10, σ1 = 0.01 S/m. Gaussian-tapered
quadratic delay aperture field distribution in (61), with α = 20, θA = 0 (nontilted), and β = 0.5 (focal plane at L f = d1 +1). Fourth-order
Rayleigh pulsed excitation as in Fig. 4. (a): Comparison between PB synthesis and reference solution for transmitted field at a fixed observa-
tion point on the focal plane (x = 0, z = d1 +1). —– Reference solution; - - - PB synthesis with Nb = 80 (Q = 0.1) and Nq = 3. Reference
solution and PB synthesis coincide on the scale of the plot. (b), (c): r.m.s. error vs. Q (at Nq = 3) and vs. Nq (at Q = 0.1), respectively,
for x = 0 and various observation distances. —�— z = d1 +0.25; —◦— z = d1 +2; —— z = d1 +10. Nq =no. of internal roundtrip
reflections.

accurate and robust predictions were observed within the
range Q < 0.1 (consistent with the results in Sect. 2.1.2)
and with Nq chosen such that the magnitude of the first
omitted term is less than 0.1% of that of the leading
term.

2.3 Transmission/reflection due to moderately rough
dielectric interfaces

Treating wave interaction with a (moderately) rough
dielectric interface (which is a complex noncanonical
geometry) by the NW-GB algorithm poses a challenging
test. The problem geometry is shown in Fig. 9. A TM-
polarized FD or TD incident field generated by a linearly
phased aperture field distribution of width d at z = z A is
assumed to impinge from free-space onto a homogeneous
slightly lossy dielectric halfspace of relative permittivity
εr1 and electrical conductivity σ1 � ωε0εr1, bounded by
a moderately rough interface described by the continuous
function h(x). Due to space limitations, we present only
the main results for the scattered field, omitting technical
details which can be found in [11].

2.3.1 Frequency domain

The incident field Ei
y being considered is the same as in

(1) and (2), but now emanating from an aperture field
distribution at z = z A and propagating along the nega-
tive z-axis. Invoking the NW-GB discretization for the
incident field as in (9)–(12) reduces the reflected field
determination to tracking each incident GB through re-
flection from the interface and recombining them at
the observer. In [12], such an approach was pursued
by extending the quasi-real ray tracing (beam shoot-
ing) algorithms in [6, 7] and Sect. 2.2.1. Accurate and
robust predictions were obtained with modest comput-

Fig. 9. Problem geometry pertaining to Sects. 2.3 and 2.4. An
aperture-generated FD or TD TM-polarized quasi-plane-wave
wavefield impinges from free space onto a dielectric halfspace with
relative permittivity εr1 and conductivity σ1, bounded by a moder-
ately rough interface z = h(x).

ing times and resources (see [12] for details). Subse-
quently, an alternative FD approach was developed [11],
based on Kirchhoff physical optics (PO) approximations,
whose inversion to the TD, via the algorithm in [8]
and Sect. 2.1.2, was found to be particularly convenient.
In this section, we briefly review the FD PO formula-
tion and its Gabor-based NW-GB beam discretization.
The interface is assumed to be located in the colli-
mation zone of the aperture so that the incident field
can be approximated by a truncated tapered plane wave
(see Fig. 9),

Ei
y(r, ω) ∼ g(xB) exp(ik0zB) , (62)

with (xB, zB) denoting the beam coordinates in Fig. 9.
In the asymptotic high-frequency range, and for smooth
roughness on the wavelength scale, the reflected field is
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approximated by the Kirchhoff PO integral

Er
y(r, ω) ∼ −

∫
CPO

Jr
PO(x ′, ω)

× ∂

∂ζ
G2D(r; r′

h; k0)d�′ , (63)

where r = (x, z), r′
h ≡ (x ′, h(x ′)), CPO extends over the

illuminated portion of the 1-D surface z = h(x), G2D is
the 2-D free-space Green’s function in (3), d�′ is the
incremental arc-length measured along the surface tan-
gent, and ∂/∂ζ denotes the normal derivative. The incident
field tapering is chosen so that the illuminated portion
of the interface, CPO , is essentially confined to the inter-
val |x| ≤ d/2. The PO equivalent magnetic surface cur-
rent density Jr

PO is given by twice the tangential reflected
electric field at the interface, obtained from the canoni-
cal solution of infinite plane-wave scattering by a plane
dielectric boundary locally tangent to the rough surface
profile

Jr
PO(x, ω) = 2R(x, ω)Ei

y(x, h(x), ω) , (64)

with R denoting the local TM plane-wave Fresnel reflec-
tion coefficient (see [11] for details). The FD PO integral
in (63) is formally analogous to the FD Kirchhoff aper-
ture radiation integrals in (2). The only major difference
is that the line integration in (63) is performed along the
1-D rough surface profile z = h(x) instead of a 1-D planar
aperture as in (2). With this observation, in [11], a NW-GB
expansion was obtained for the PO reflected field in terms
of propagation-matched tilted beams,

Er
y(r) ∼

∑
|m|≤(d/2Lx )

Cr
mB̃r

m(r) . (65)

In (65), the coefficients Cr
m are approximated by sampling

the PO equivalent current Jr
PO at the Gabor lattice points

xm = mLx ; these coefficients depend on the incident field
and on the local properties of the surface. The NW-GB
propagators B̃r

m are formally analogous to those in (14),
and propagate along the local reflection direction accord-
ing to Snell’s law. The transmitted field is obtained in
a similar manner. The reader is referred to [11] for theor-
etical and implementation details.

2.3.2 Time domain

Again exploiting the formal analogy between the reflected
NW-GB propagators B̃r

m and those in (14), the TD in-
version of the FD reflected field NW-GB expansion in
(65) is straightforward, proceding along the guidelines in
Sect. 2.1.2. Thus, for pulsed quasi-plane-wave incidence,

ei
y(r, t) ∼ g(xB)p

(
t − c−1

0 zB
)
, (66)

with p(t) being a Rayleigh pulse as in (24), one obtains
the following NW-PB expansion for the reflected field

er
y(r, t) ∼

∑
|m|≤(d/2Lx )

cr
mbr

m(r, t − tm) . (67)

Theoretical and implementation details, as well as the
corresponding expansion for the transmitted field, can be
found in [11]. We note that the Gabor expansion coeffi-
cients cr

m and the time delay tm are dependent on the inci-
dent field and on local properties of the surface, while the
NW-PB propagators br

m are formally analogous to those
in (26), with propagation direction matched to the local
reflection direction.

In order to validate and calibrate the algorithm, we
developed an independent moment-method-based full-
wave reference solution (see [11] for details). Typical
results are shown in Fig. 10. Specifically, for the tem-
poral behavior of the scattered field at a fixed obser-
vation point in the presence of the interface profile in
Fig. 10a, Fig. 10b shows the comparison between the ref-
erence solution and the NW-PB synthesis (150 beams)
in (25), which involves a modest computational effort
when compared with conventional Kirchhoff-PO inte-
gration. Good agreement is observed even in the finer
details, with a r.m.s. error ∆ey = −30 dB. Similar results
have been obtained for the transmitted field. Convergence
and accuracy issues are discussed in [11]. Concerning
the range of applicability, we have found fairly accurate
predictions

(
∆ey �−20 dB

)
for roughness with max-

imum height hmax � 0.5c0T , (average) curvature radii
r̄c � 2c0T and maximum slopes αmax � 40◦, for nearly-

Fig. 10. Simulation geometry and parameters for rough surface
scattering. (a): Rough surface profile (arbitrary units). (b): Tem-
poral behavior of reflected field at x = −0.4, z = 0.5. Aperture ta-
pering: f(x) = exp

(−18x2/
(
πd2

))
, d = 1. Fourth-order Rayleigh

pulsed excitation as in Fig. 4. Simulation parameters: εr1 = 4.5,
σ1 = 0.012 S/m, z A = 0.2, θA = 0, c0T = 0.08. —– Reference so-
lution; - - - NW-PB synthesis (150 beams). r.m.s. error: ∆ey =
−30 dB.
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vertical incidence
(
θA � 30◦) and for dielectrics with

σ1/(Ωε0εr1)� 0.05.

2.4 Scattering by objects embedded below
moderately rough dielectric interfaces

We again refer to the problem geometry in Fig. 9, but
now include a buried target with relative permittivity εr2
and electric conductivity σ2 ≈ 0 occupying a region D in
the dielectric halfspace (see Fig. 11). Our interest lies in
computing the target-scattered field observed at r = (x, z)
above the interface. These results will be used subse-
quently (Sect. 3) in inverse scattering scenarios.

2.4.1 Frequency domain

The y−directed FD total field observed in free space can
be written as

Ey(r, ω) = Eb
y(r, ω)+ Es

y(r, ω) , (68)

where Eb
y represents the background field (i.e., the field in

the absence of the target), and

Es
y(r, ω) = ω2

c2
0

∫∫
D

Ey(r′, ω)Gb(r, r′, ω)

× O(r′, ω)dr′ , (69)

Fig. 11. Simulation geometry and parameters for forward and in-
verse scattering of objects embedded below moderately rough in-
terfaces. An elliptic (10 cm × 6 cm) dielectric target with εr2 = 3.5
and σ2 = 0 is buried with center at 10 cm below the nominal
ground (z = 0). The rough surface profile realization was randomly
generated so as to simulate typical moderate roughness (maximum-
to-minimum height ∼ 4 cm, maximum slope ∼ 32◦) for a class of
realistic soils (εr1 = 4, σ1 = 0.01 S/m). The reflected field is sam-
pled at Nr = 11 receivers located at zr = 0.3 m and xr = −0.5 m,
−0.4 m, . . . , 0.5 m. Incident field tapering g(x) = cos(πx/d). Pa-
rameters: d = 1 m, θA = 0, z A = 0.1 m. Fourth-order Rayleigh
pulsed excitation as in Fig. 4 (T ∼ 1.3 ns).

is the field scattered by the target. In (69), Gb represents
the FD Green’s function of the rough-interface dielec-
tric halfspace, Ey is the total field in the target region,
and

O(r′, ω) = [
εr(r′)− εr1

]+ i

[
σ(r′)−σ1

]
ωε0

= ∆εr(r′)+ i
∆σ(r′)
ωε0

(70)

is referred to as the object function. The integration in
(69) is limited to the region D in which the object func-
tion is nonzero. In the presence of low-contrast targets
(|∆εr |/εr1 � 1), we can use the linearizing Born approx-
imation [13] which replaces the total field Ey inside the
target by the transmitted field Et

y in D in the absence of
the target, yielding

Es
y(r, ω) ≈ k2

0

∫∫
D

∆εr(r′)Et
y(r

′, ω)

× Gb(r, r′, ω)dr′ , (71)

where the (weak) conductivity contrast contribution ∆σ
in (70) has also been neglected. For justification and
other approaches, see [14–16]. The unperturbed transmit-
ted field Et

y and the Green’s function Gb in (71), which
account for distortion of the useful signal due to the
twice-traversed rough air-ground interface, are computed
efficiently via the PO-GB syntheses detailed in [11, 17],
which are conceptually analogous to that in (65). We shall
not consider the FD formulation further because our even-
tual application is for pulsed excitation.

2.4.2 Time domain

For pulsed excitation, with time dependence p(t), by
Fourier inversion of (68) and (71), one obtains

ey(r, t) = eb
y(r, t)+ es

y(r, t) , (72)

es
y(r, t) ≈

∫∫
D

∆εr(r′)ū(r, r′, t)dr′ , (73)

where the Born TD kernel ū(r, r′, t) is given by

ū(r, r′, t) = 1

2πc2
0

∞∫
−∞

ω2 Et
y(r

′, ω)

× Gb(r, r′, ω)P(ω) exp(−iωt)dω . (74)

As shown in Sect. 2.3.2 and [11], the computation of the
field transmitted through moderately rough dielectric in-
terfaces can be carried out efficiently through the Gabor
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Fig. 12. Simulation results for scattered fields pertaining to Fig. 11.
Parameters as in Fig. 4. Field observed at (x = 0.3 m, z = 0.3 m)
(a): —– Total field ey (reference solution); - - - Background
field eb

y (reference solution). Both are coincident on the scale of
this drawing (i.e., the target-scattered field cannot be identified).
(b): Target-scattered field es

y = ey −eb
y (note the substantially en-

larged amplitude scale). —– Reference solution; - - - Born-PB
approximation (for implementation details, see [17]).

PO-PB algorithm. Moreover, these results can readily be
extended to deal with the subsequent irradiation from an
induced line-source in the dielectric halfspace, thereby
yielding a closed form TD expression for the kernel in
(74) similar to those in Sect. 2.3.2 and [11]. However,
it may be computationally more efficient to synthesize
the transmitted field Et

y and the rough-surface halfspace
Green’s function Gb in the FD, and then compute the TD
kernel in (74) via FFT algorithms [18] (see the discussion
in [17]).

Numerical experiments have been conducted for the
simulation configuration described in Fig. 11. A typical
sample is shown in Fig. 12, which compares the Born-PB-
generated result with a moment method rigorous reference
solution. Reasonably good agreement is observed. For im-
plementation details, see [17].

3. Inverse scattering

3.1 Overall problem strategy

In a further escalation of complexity, we have applied
the Gabor PO-PB algorithms in Sects. 2.3 and 2.4 to
the end-to-end imaging of subsurface environments in
the presence of moderately rough interfaces, which is
relevant for certain practical ground penetrating radar
(GPR) scenarios, such as anti-personnel land mine re-
mediation. Here, one typically is concerned with shal-
lowly buried small targets having constitutive properties
very close to those of the background soil; the interface-
generated clutter may introduce severe constraints on
target localization and classification capability. In this
connection, statistical Monte-Carlo-based approaches for

clutter suppression, which work reasonably well in de-
tection problems with small roughness [19], turn out
to be quite unreliable for localization and classification
in the presence moderate roughness [20]. These con-
siderations have motivated our recent investigations to-
ward a more robust, physics-based, adaptive approach
to subsurface imaging in the presence of a moderately
(both in height and slope) rough air-soil interface. The
NW-GB algorithm plays an important role in the ef-
ficient implementation of this approach, which has so
far been applied to 2-D frequency-stepped [21, 22] and
pulsed [17, 23] GPR configurations, for slightly lossy soils
and low-contrast mine-like targets, yielding encouraging
results.

The end-to-end strategy is set in the TD, utilizing
suitable time-windowing of the data to perform selec-
tive imaging tasks [17]. Specifically [17], a prior (non-
linear) inverse scattering problem is solved to reconstruct
the coarse-scale air-ground interface profile from sparse
early-time observation data and the fast NW-GB forward
scattering model (see Sect. 2.3). The resulting interface
profile reconstruction is employed subsequently to cor-
rect the late-time raw observation data, compensating for
ground reflection and (double) transmission; this yields
significant clutter suppression. Target imaging is finally
accomplished via robust inversion of the Born-linearized
forward scattering model in Sect. 2.4. The problem geom-
etry is shown in Fig. 11, with pulsed excitation. The un-
derground test domain (D(test) in Fig. 11) is to be im-
aged from sparse TD scattered field observations, so as
to extract estimates of its dielectric properties which al-
low localization and classification of possible anomalies.
To this end, the y-directed scattered electric field is sam-
pled at Nt time instants at Nr fixed receiver locations
xr

1, . . . , xr
Nr

on the plane z = zr (Fig. 11) to obtain a set
of observations. The known term in the problem is this
set of Nr × Nt samples. In our numerical experiments,
we shall use synthetic field observation data generated
via a moment-method-based full-wave solution of the for-
ward scattering problem (see [17] for details). Results
for frequency-stepped GPR configurations are presented
in [21, 22].

3.2 Reconstruction of the moderately rough
dielectric interface profile

Following the problem strategy in Sect. 3.1, we consider
the processing of the early-time response of a pulsed
GPR system, sampled at a limited number of receivers,
in order to extract the interface profile [23]. We use
a compact low-dimensional spline parameterization of
the roughness profile, which provides implicit regulariza-
tion that mitigates the inherent ill-posedness of the prob-
lem, and then use the PO-PB forward scattering model
in Sect. 2.3.2 and [11] to generate predictions of the
reflected field at the receivers. The estimation problem
is thus converted into a nonlinear optimization prob-
lem aimed at retrieving the unknown spline coefficients
via minimization of a least-square error functional that
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Fig. 13. Rough surface profile reconstruction via early-time re-
sponse processing. Parameters as in Fig. 11. The early-time field
at the receivers is sampled at Nt = 50 time instants with the obser-
vation windows chosen so as to roughly gate out causal scattering
contributions from regions deeper than ∼ 8 cm below nominal
ground. —– Actual profile; - - - Reconstruction with observa-
tion data corrupted by a ±10% additive uniform noise; · · · · · ·
Reconstruction with −5% error in εr1 and σ1.

involves the PO-PB forward scattering prediction and
the available observed data. The observation time win-
dows are chosen so as to gate out the late-time response
(i.e., causal contributions from regions beyond a critical
depth) due to the possible presence there of buried targets
which may produce a bias in the surface estimation. The
resulting optimization problem is generally non-convex,
and therefore the possible presence of local minima ren-
ders its numerical implementation non-trivial. Optimiza-
tion strategies and computational issues are discussed
in [23].

Referring to the geometry and parameters in Fig. 11,
typical interface reconstruction examples are shown in
Fig. 13. For these reconstructions, as discussed in [23], we
used Nt = 50 time samples of the early-time response at
each of the 11 receivers in Fig. 11; the observation time-
windows were chosen so as to roughly gate out scattering
contributions from possible regions deeper than ∼ 8cm
below nominal ground (z = 0), thus minimizing any pos-
sible bias due to target scattering. In order to test the ro-
bustness of the approach, we introduced some corruption
into the observed data, as explained in the figure cap-
tion. The resulting cost functional was minimized using
the conjugate gradient (CG) strategy described in [23], as-
suming as initial guess a flat interface at z = 0. Despite
the polluted data, interface estimates are reasonably accu-
rate, apart from the weakly-illuminated edge regions. This
kind of accuracy was observed in many numerical experi-
ments, with CG convergence typically achieved in 30−40
iterations.

3.3 Imaging of targets buried below the moderately
rough dielectric interface

The coarse-scale interface profile reconstruction in
Sect. 3.2 is now used to generate predictions of the ground
scattering, which is then suppressed so as to leave the

late-time observed data primarily representative of the un-
derground target scattering contribution. Our inversion
strategy evolves from the Born-approximated NW-PB-
parameterized problem formulation in (73), Sect. 2.4.2.
Various pixel-based and object-based regularization tech-
niques have been explored in order to achieve reliable
inversion of the forward scattering model and to cope with
its inherent ill-posedness. In pixel-based approaches, the
test domain D(test) in Fig. 11 which is to be imaged, is dis-
cretized into Np pixels. The resulting discretized linear
forward model in (73) is cast into matrix form as

y = A · x +n , (75)

where y is a column vector containing the observations
(known term) in (73), x is a vector containing the unknown
dielectric contrast ∆εr at each pixel, A is a matrix contain-
ing the space-time discretization of the Born TD kernel in
(74), and the noise vector n accounts for measurement un-
certainty and unmodeled irregularity effects. To reliably
invert the linear model in (75), we have explored various
edge-preserving regularization approaches. Those based
on total variation (TV) [20] were found to be especially
effective. In that procedure, the problem is posed as the
minimization of the functional

JTV (x) =
∥∥∥y − A · x

∥∥∥2

2
+β1

∥∥∥D · x
∥∥∥1

1

+ β2

∥∥K
(
x
)∥∥2

2 . (76)

In (76), the L2-norm first term penalizes lack of data fi-
delity, while the other terms introduce some loose a pri-
ori knowledge about the object geometry, with β1 and
β2 denoting regularization parameters. Thus, the second
term highlights the expected piecewise smoothness in
the reconstructed object function by penalizing the L1

norm of a spatial gradient operator D. As compared
with the L2 norm in the standard Tikhonov regulariza-
tion [24], the L1 norm penalizes large jumps less, thus
allowing sharper edges to form in the reconstructed ob-
ject function and yielding visually better (less blurred)
reconstructions. The last term in (76) is related to pos-
sible prior information about the object function sign.
Assuming, for instance, a negative value for ∆εr in the
target region, the L2 norm of the operator K penalizes
positive values (or viceversa) of the reconstructed object
function

[
K
(
x
)]

k =
{

xk, xk > 0 ,

0, xk ≤ 0 .
(77)

In our implementation, the cost functional in (76) is min-
imized via an iterative procedure based on half-quadratic
approximations (see [25] for details). The choice of the
regularization parameters β1 and β2 was implemented by
trial and error.

Concerning object based reconstruction approaches,
found to be particularly attractive was a curve-evolution
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(CE) algorithm [26, 27, 28], wherein the target homogene-
ity is enforced explicitly, thereby reducing the imaging
problem to estimating the target contour �C and the relative
permittivity contrast ∆εr via minimization of the follow-
ing quadratic functional [28]

JCE

( �C,∆εr

)
= 1

2

∑
n

(
es

yn −∆εruyn
)2

+β

∫
�C

d� . (78)

The first term in (78) encourages data fidelity, with es
yn de-

noting space-time scattered field observation samples and
uyn denoting the corresponding forward model prediction
for a given target contour �C and unit-amplitude relative
permittivity contrast. The second term serves as a regular-
izer by penalizing the arc-length of the estimated curve,
with the regularization parameter β (empirically selected
by trial and error here) affecting its smoothness. The cost
functional in (78) is minimized in our implementation via
CE using the level set method [29].

Referring to the geometry and parameters in Fig. 11,
some representative reconstruction results are shown in
Fig. 14. In these examples, the 20 cm×20 cm square test
domain surrounding the target to be imaged was dis-
cretized in 30 ×30 pixels, and Nt = 300 time samples of
the late-time response (causally related to the test domain)
were used. Specifically, the true object function (ground
truth) is shown in Fig. 14a, and the corresponding TV and
CE reconstructions are shown in Figs. 14b and c, respec-

Fig. 14. Imaging results pertaining to the simulation domain and
parameters in Fig. 11. Underground imaging examples (Nt = 300)
with corrupted data (±10% additive uniform noise). For implemen-
tation details, see [17]. (a): Ground truth (∆εr reference configu-
ration). (b): Total variation (TV) reconstruction with adaptive com-
pensation. (c): Curve evolution (CE) reconstruction with adaptive
compensation; estimated target boundary (white curve) is super-
posed on ground truth; estimated target permittivity: εr2 = 3.56,
i.e., 1.7% error. (d): TV reconstruction without compensation (flat
interface at z = 0).

tively. Total variation (TV), though not yielding highly ac-
curate point-wise reconstruction, provides reasonably ac-
curate target localization. Curve evolution (CE) provides
rather accurate direct estimations of both the target bound-
ary and dielectric contrast. The limited viewing geometry
renders the problem more ill-posed in the horizontal di-
rection, resulting in less accurate horizontal localization
in both cases. The effect of the interface roughness and
the importance of adaptive compensation is highlighted in
Fig. 14d, where a TV reconstruction without any compen-
sation (i.e., assuming a flat interface at z = 0) is shown.
The poor quality of the reconstruction can be only slightly
improved using statistical processing, as shown in [20],
but is still not comparable to that of Figs. 14b and c. The
calibrated range of applicability of the implemented algo-
rithm is discussed in [17]. Frequency-stepped GPR con-
figurations are explored in [22].

4. Current and planned investigations,
and alternative approaches

4.1 Current and planned investigations

The FD and TD algorithms discussed in Sects. 2 and 3
are restricted to 1-D aperture field distributions, and 2-D
fields and physical configurations. Extensions to full 3-D
vector fields and geometries are in progress. In this con-
nection, systematic investigation of both rigorous and
approximate (NW paraxially asymptotic) Gabor-based
Gaussian beam (GB) parameterizations of time-harmonic
3-D vector wavefields radiated by 2-D large truncated
plane aperture field distributions has been carried out
in [30, 31]. These formulations have been subsequently
extended to the TD in [32], for the case of NW-GBs. The
FD quasi-real ray tracing scheme in [6, 7] and Sect. 3.1
has been extended to propagate 3-D vector fields through
arbitrarily-shaped dielectric layers in [33]. In a stepwise
approach toward the 3-D extension of the inverse scatter-
ing algorithms in Sect. 3, which should allow the treat-
ment of more realistic GPR scenarios, we have started
from NW-GB algorithms for scattering by, and transmis-
sion through, moderately rough 3-D dielectric interfaces.
Preliminary results, for the TD case, have been presented
in [34].

4.2 Alternative approaches

Although all applications presented in this review are
based on the NW-GB Gabor discretization,there are re-
cent alternative methodologies for GB-based algorithms.
In [35], Rao and Carin proposed the method of matched
pursuits (MP), a nonlinear iterative procedure for pro-
jection of a function onto a Gabor basis, in connection
with forward and inverse scattering in electrically large
inhomogeneous regions. For these applications, the MP
method was found to provide better flexibility than the
traditional Gabor decomposition of a fixed phase-space
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lattice. Also, frame-based approaches have emerged as
possible alternatives, which overcome some of the im-
plementation difficulties associated with the conventional
rigorous Gabor expansion [36, 37, 38]. These new rig-
orous schemes provide a different perspective for Gabor-
parameterized field expansions. Their relation to the prag-
matic approximate (but well calibrated) NW-GB schemes
reviewed in this paper remains to be explored.

5. Conclusions

In this compact review, we have endeavored to docu-
ment the accomplishments (so far) of the NW-GB algo-
rithm for high-frequency FD and short-pulse TD opera-
tion, which are encouraging for those applications that
meet certain “moderate” criteria. For the particular appli-
cations in this paper, these criteria have been specified in
the text. Each new scenario needs to be attacked sequen-
tially, starting with 2-D fields, calibrating the NW-GB
algorithm against independent reference solutions, etc.
This sequential approach has been illustrated here for the
end-to-end imaging problem discussed in Sect. 3 and de-
picted in Fig. 11, which was synthesized by combining
the constituent problems discussed in Sects. 2.1, 2.3, and
2.4. While this is a tedious process, the potential reward
(if it works) is a physically appealing, highly efficient
forward solver for assembling the massive data base re-
quired for forward predictions and inverse reconstructions
in complex environments spanning large computational
domains.
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