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Abstract – We address the engineering of degenerate-band-edge effects in nonlocal metamaterials. Our approach,
inspired by nonlocal-transformation-optics concepts, is based on the approximation of analytically-derived nonlocal
constitutive ‘‘blueprints’’. We illustrate the synthesis procedure, and present and validate a possible implementation
based on multilayered metamaterials featuring anisotropic constituents. We also elucidate the physical mechanisms
underlying our approach and proposed configuration, and highlight the substantial differences with respect to other
examples available in the topical literature.
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1 Introduction

Nonlocal light-matter interactions [1, 2] are becoming
increasingly relevant in a broad variety of application scenarios
including dispersion engineering [3], ultrafast nonlinear optical
response [4], artificial magnetism [5], additional extraordinary
waves [6], enhanced spontaneous emission [7, 8], Dirac-point
conical dispersion [9], scattering suppression [10], topological
transitions [11], and light-based analog signal processing [12].

In a series of recent investigations [13, 14], we have been
concerned with possible extensions of the well-established
transformation-optics (TO) framework [15, 16] so as to
systematically engineer metamaterials exhibiting desired non-
local effects. As opposed to the conventional TO formulation,
which exploits the form-invariant properties of Helmholtz or
Maxwell’s equations with respect to spatial (and, hence, inher-
ently local) coordinate transformations, the basic idea underly-
ing our approach is to apply the coordinate-transformation
machinery in the wavevector-frequency phase-space, accessed
via spatial Fourier transform. In such phase space, nonlocal
effects naturally manifest themselves in terms of wavevector-
dependent constitutive properties, and can be associated with
nonlinear wavevector transformations. In a series of applica-
tion examples, we illustrated the insightful correspondences
between typical nonlocal effects and the geometrical/analytical
characteristics of the associated transformations, which indi-
cate that the powerful geometrically-driven design, typical of
conventional TO, is retained by our approach, with the actual
synthesis problem reduced to the suitable approximation of

analytically-derived constitutive ‘‘blueprints’’. For instance,
we showed that (non)reciprocal effects and the appearance of
additional extraordinary waves [6] are directly related to the
(non-)centersymmetry and multivaluedness, respectively, of
the transformations [13]. Moreover, we derived the analytical
properties of classes of transformations that could induce
stationary points in the dispersion diagram, and we also
showed that frequency-dependent wavevector transformations
enable a finer tailoring in the phase space, thereby opening
up the possibility to engineer complex spatio-temporal disper-
sion effects such as Dirac-point conical singularities [14].

In this paper, as a further illustration of the potential of the
above approach, we apply it to the engineering of degenerate
band edge (DBE) effects. Such exotic dispersion effects, first
studied by Figotin, and Vitebskiy [17–21], are eliciting a
growing attention (see, e.g., [22–30] and references therein)
in view of their potential relevance to diverse applications
including slow light, solid-state lasers, quantum-cascade lasers,
sensors, optical delay lines, traveling-wave tubes, distributed
solid-state amplifiers, and switches. Here, inspired by our
nonlocal TO approach, we investigate an alternative
metamaterial-based design, which is amenable to a multilay-
ered implementation.

Accordingly, the rest of the paper is structured as follows.
In Section 2, we introduce the problem statement and our
general design strategy. In Section 3, we outline the synthesis
procedure, from the derivation of the ideal constitutive blue-
prints to the actual multilayered implementation. In Section 4,
we illustrate some representative examples, and we validate
them via full-wave numerical simulations, by ascertaining
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the emergence of typical DBE physical ‘‘footprints’’. Finally,
in Section 5, we draw some brief conclusions, and provide
few hints for future research.

2 Problem statement and geometry

In a series of influential studies [17–21], Figotin and
Vitebskiy investigated the theoretical implications of station-
ary points in a dispersion relationship. Assuming a time-
harmonic exp(�ixt) dependence, and given a general
dispersion law x(b) relating the angular frequency x and the
propagation constant b, a m-th order stationary point at x = x0

is characterized by

onx
obn b0ð Þ ¼ 0; n ¼ 1; . . . ; m� 1;

omx
obm b0ð Þ 6¼ 0; ð1Þ

with b0 = b(x0). This implies that, within a neighborhood of
such point, the dispersion law behaves as

x� x0 / b� b0ð Þm: ð2Þ

The most trivial example of stationary point is the so-called
regular band edge, corresponding to m = 2 in equations (1) and
(2), and naturally occurring in periodic structures such as
photonic crystals. Less common and more subtle are higher-
order cases such as m = 3 and m = 4. The former (m = 3) is
associated with the so-called ‘‘frozen-modes’’, which can
occur, e.g., in suitably engineered photonic crystals containing
anisotropic material constituents. The latter (m = 4) constitutes
the DBE case of specific interest here, and differs fundamen-
tally from the regular band edge case above, mainly due to
the critical contribution of degenerate evanescent modes.
The reader is referred to [17–21] for a thorough discussion
of the theoretical details and related physical implications.

Here, we limit ourselves to emphasize that DBEs may give
rise to giant slow-wave resonances which, by comparison with
the regular-band-edge counterparts, tend to exhibit much larger
energy accumulation and, consequently, much stronger light-
matter interactions. This may lead, for instance, to giant gain
enhancement [30].

DBEs can be obtained in photonic crystals containing
uniaxial media with suitably tilted optical axes, as an effect
of the coupling between two modes with different polarizations
[17–21, 30]. Alternatively, they can also be engineered in opti-
cal fibers with multiple gratings [22, 24, 27], coupled periodic
waveguides [23, 25, 26, 28], and periodically-loaded circular
waveguides [29].

Here, we explore a different configuration based on a non-
local metamaterial. As schematically illustrated in Figure 1a,
we consider a 2-D scenario (with geometry and field quantities
independent of y) where a transverse-magnetic-polarized
plane-wave (with y-directed magnetic field) propagates in a
homogeneous space entirely filled by a nonlocal, anisotropic
medium. Such medium is assumed as nonmagnetic, and is
characterized by a relative-permittivity tensor ~e which depends
on the wavevector k. Here and henceforth, the tilde ~ identifies
wavevector-dependent quantities.

By focusing on a simple uniaxial anisotropy, the arising
plane-wave dispersion relationship can be simply written in
terms of the relevant components (~exx and ~ezz) as

k2
x

~ezz kð Þ þ
k2

z

~exx kð Þ ¼
x2

c2
; ð3Þ

where kx and kz denote the x- and z-domain wavenumbers,
respectively, and c is the speed of light in vacuum.

In what follows, inspired by our previously introduced
nonlocal TO approach, we derive the ideal blueprints for the
nonlocal medium so as to induce a DBE stationary point in
the dispersion relationship (3). Moreover, we also address the
synthesis of a multilayered metamaterial implementation that
suitably approximates (within a neighborhood of the DBE
stationary point) such ideal blueprints. Though still based on
a periodic multilayer, our implementation is substantially
different from those in references [17–21].

3 Synthesis procedure

3.1 Ideal constitutive blueprints

In reference [14], within the framework of nonlocal TO, we
derived a class of wavevector transformations that could induce
stationary points (of arbitrary order) in the dispersion
relationship. In particular, we explored in detail the case
m = 3 in equations (1) and (2), corresponding to the ‘‘frozen-
mode’’ regime. A similar approach could be applied to deal
with the DBE (m = 4) case of interest here. For brevity, we
do not repeat here the analytical developments, which can be
found in reference [14]. In fact, as discussed in reference
[14], while providing a systematic, constructive derivation of
the required material blueprints, our approach is not the only
possible one, as the problem does not admit a unique solution.
Moreover, for the particular 2-D, coordinate-separable and
non-magnetic structure of the arising constitutive blueprints,
their interpretation is rather straightforward.

Paralleling [14], we consider the following class of
coordinate-separable material blueprints (henceforth identified
by the superscript ‘‘BP’’):

~e BPð Þ
xx kzð Þ ¼

k2
z

~Q kzð Þ
; ~e BPð Þ

zz kxð Þ ¼ ezz0; ð4Þ

where ezz0 is a constant, and ~Q kzð Þ is a polynomial function.
It can be readily verified, from equation (3), that

o
nx

o kzð Þn
¼
Xn

m¼1

~Xm kx; kzð Þ o
m ~Q kzð Þ
o kzð Þm

; ð5Þ

with ~Xm denoting spectral functions. Therefore, by assuming
propagation along the z-direction (i.e., kx = 0, kz = b), the
desired DBE condition in equation (1) (with m = 4) can be
attained by choosing

~Q kzð Þ ¼ c kz � b0ð Þ4 þ ~R kzð Þ þ k2
0; ð6Þ

where c is a nonzero real constant, and k0 = x0/c = 2p/k0

denotes the wavenumber in vacuum at the design angular
frequency (with k0 denoting the corresponding wavelength).
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Moreover, ~R is an arbitrary function that vanishes (together
with its first four derivatives) at kz = b0,

~R kzð Þ ¼
X

m>4

rm kz � b0ð Þm; ð7Þ

with rm denoting arbitrary coefficients.
As anticipated, the particularly simple analytical structure

of the constitutive blueprints (4) [together with Eq. (6)] makes
it possible to readily verify, by simple inspection, that the
desired DBE conditions are fulfilled. In particular, via straight-
forward algebra, the coefficient c in equation (6) can be
directly related to the nonzero derivative term in the dispersion
equation [cf. Eq. (1)],

c ¼ x0

12c2

o4x

ob4 b0ð Þ: ð8Þ

Figure 1b qualitatively shows the dispersion surface
[cf. Eq. (3)] pertaining to the above class of constitutive
blueprints (with ~R ¼ 0). As it can be observed, the quartic
nature of the dispersion relationship gives rise to two modal
branches, which degenerate at the design angular frequency,
thereby yielding the sought DBE-type stationary point in the
dispersion diagram, as more clearly visible in the kx = 0 cut
shown in Figure 1c.

It is worth highlighting that the class of constitutive
blueprints in equations (4) and (6) is idealized, and does not
necessarily fulfill the physical feasibility conditions (e.g.,
causality) in the entire (k, x) phase space (see also the
discussion in Ref. [14]). Likewise, the dispersion characteris-
tics in Figures 1b and 1c should only be intended as conceptual
illustrations, since explicit temporal dispersion (i.e., explicit
x-dependence) is neglected.

3.2 Multilayered metamaterial synthesis

Having determined a class of ideal constitutive blueprints
that yields the desired dispersion effects, as in reference [14],
the synthesis problem can be formulated as finding a physical

metamaterial structure whose (nonlocal) effective constitutive
parameters suitably approximate the targeted blueprints. It is
important to stress that, in our problem, such approximation
is needed only within a limited region of the phase space,
i.e., in the vicinity of the DBE stationary-point (kx = 0, kz = b0,
x = x0). As discussed in reference [14], this generally renders
the synthesis problem tractable, even though the assumed blue-
prints may appear as unphysical if extended to the entire phase
space (see also the discussion above).

In view of the uniaxial character and analytical (rational)
structure of the assumed blueprints in equations (4) and (6),
multilayered metamaterials represent a particularly suited
implementation. In the recent technical literature, several
approaches have been proposed for the derivation of nonlocal
effective models of metallo-dielectric multilayered metamateri-
als (see, e.g., [31–35]). Here, we utilize a generalized version
of the approach proposed by Elser et al. [31], which determines
the approximate nonlocal effective model in such a way the
corresponding dispersion relationship matches the Taylor
expansion of the exact one (around a desired phase-space
point) up to a given order. First, we note that, in view of
equation (6), the constitutive blueprints (4) that we need to
approximate contain odd powers of kz. The implied symmetry
breaking (in the z-direction) could be physically induced in
various ways, e.g., by considering uniaxially-anisotropic
material constituents with tilted optical axes and/or gyrotropic
(nonreciprocal) materials. Here, we consider this latter case,
which allows us to directly exploit the results in reference
[14]. Accordingly, we consider a generic periodic multilayer,
stacked along the x-direction, and with a unit-cell composed
of nonmagnetic, homogeneous, isotropic or gyrotropic layers.
Hence, the p-th material constituent can be generally
characterized by a relative permittivity tensor

ep ¼
ep 0 ijp

0 1 0

�ijp 0 ep

2
64

3
75; ð9Þ

with jp = 0 yielding the isotropic case. It can be shown
(see [14] for details) that, in the vicinity of the DBE

(a) (b) (c)

Figure 1. (a) Problem schematic in the assumed 2-D (x, z) reference system (with geometry and field quantities independent of y). We
consider a transversely-magnetic-polarized plane-wave (with wavevector k) propagating in a homogenous space filled up by a nonlocal,
nonmagnetic, anisotropic medium characterized by a relative-permittivity constitutive tensor ~e kð Þ. (b) Qualitative example of ideal dispersion
surface [cf. Eq. (3)] pertaining to the assumed constitutive blueprints [cf. Eqs. (4) and (6), with ~R ¼ 0]. (c) Corresponding dispersion diagram
(kx = 0 cut), with the black-cross marker indicating the DBE-type stationary point.
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stationary-point of interest kx = 0, kz = b0, x = x0, the
above class of metamaterials can be described in terms of
the nonlocal effective parameters

~eðeffÞ
xx kz; að Þ � 2� v0 að Þ

k2
0

P
l¼1

4

kl�2
z dlvl að Þ

; ~eðeffÞ
zz kx; að Þ

� 2� v0 að Þ
k2

0d2 1� k2
x d2

12

� � ; ð10Þ

where d is the multilayer period (unit-cell thickness), the
array a symbolically denotes the set of geometrical and
constitutive parameters of the multilayer (with the explicit
dependence on x0 and b0 omitted for notational simplicity),
and the functions vl are chosen so that arising dispersion
equation matches the Taylor series (about kx = 0, kz = b0,
x = x0) of the exact one up to the second-order in kx and
fourth-order in kz.

The synthesis problem can thus be cast as finding an
‘‘optimal’’ multilayer parameter set a, so that the nonlocal
effective model (10) approximately matches the desired
constitutive blueprints [cf. Eqs. (4) and (6)] in the vicinity of
the DBE stationary point. To further relax the synthesis
problem, we only set ~R ¼ 0 and leave as degrees of free-
dom the parameters c and b0 in the blueprints, whereas,
though not directly relevant in the assumed incidence
conditions, the parameter ezz0 in equation (4) is obtained by
simple matching at kx = 0,

ezz0 ¼ ~eðeff Þ
zz kx ¼ 0; að Þ � 2� v0 að Þ

k2
0d2 : ð11Þ

We are thus led to an optimization problem, i.e., finding the
multilayer parameter set a as well as the blueprints degrees of
freedom c and b0 that minimize a suitable error functional,

aðoptÞ; cðoptÞ; b optð Þ
0

h i
¼ argmin

a;c;b0

XJ

j¼1

wj ~eðBPÞ
xx kzj; c; b0

� ���

� ~eðeffÞ
xx kzj; a
� �

j2;
ð12Þ

with kzj and wj, j = 1, . . ., J denoting discrete kz-samples
around kz = b0 and positive weight coefficients, respectively.

For the minimization of the error functional (12), we found
that a combination of a standard differential-evolution
algorithm and the Nelder-Meald method (see Appendix for
details), while not necessarily guaranteeing the convergence
to the global minimum, usually provided reasonably good
results.

4 Representative results

As an illustrative example of application, we consider a
multilayered metamaterial implementation with a four-layer
unit-cell, containing three isotropic layers and a gyrotropic
one (see the inset in Figure 2b). Since we are only interested
in a very narrow frequency range (x � x0), we neglect the
material dispersion of the constituents. Moreover, for a better
illustration of the phenomena, we also neglect material losses.

Figure 2 illustrates the synthesis results (in terms of nonlo-
cal effective constitutive parameters) obtained by choosing, in
the error functional (12), J = 21 kz-samples equispaced within
the interval [0.9b0, 1.1b0], with uniform weights (wj = 1).

More specifically, for the optimized parameters given in
the caption, Figure 2a compares the blueprint and synthesized
~exx components, over the relevant spectral range. A fairly good
agreement is observed, especially within the (yellow-shaded)
range [0.9b0, 1.1b0] where the parameter matching was
directly enforced. Though not directly relevant for the assumed
kx = 0 propagation direction, Figure 2b shows the correspond-
ing ~ezz components, which are exactly matched only at kx = 0
[cf. Eq. (11)], but do not substantially differ over a reasonably
wide kx-range.

From the optimized multilayer parameters given in Figure 2
caption, we note the presence of both positive and negative
values of the permittivities. This is expectable, as strong non-
local effects in multilayer configurations typically stem from
the excitation and coupling of surface-plasmon polaritons
(SPPs) supported at the interfaces separating the negative-
and positive-permittivity layers [6–12].

1ε 2ε

1d 3d2d
z

4ε

4d

3ε

x

(a)

(b)

Figure 2. (a), (b) Effective constitutive parameters at the design
angular frequency x = x0. Red-dashed curves represent the opti-
mized blueprints, obtained from equations (4) and (6), with ~R ¼ 0,
c ¼ �0:478k�2

0 , and b0 = 0.46k0. Blue-solid curves pertain to the
nonlocal effective model of the synthesized multilayered metama-
terial [four-layer unit cell shown in the inset of panel (b)] with
e1 = 7.089, e2 given in equation (9) (with e2 = �1.104 and
j2 = 0.0365), e3 = 3.35, e4 = �1.957, d1 = 0.252k0,
d2 = 0.0815k0, d3 = 0.102k0, d4 = 0.0648k0. The parameter match-
ing is enforced at kx = 0 and within the (yellow-shaded) range
0.9b0 � kz � 1.1b0.
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For the optimized parameter configuration, Figure 3 shows
the dispersion diagram for kx = 0, numerically computed via a
rigorous transfer-matrix-based approach (see [14] for details),
in the vicinity of the design angular frequency x0, from which
the attained DBE condition (at kz = b0 = 0.46k0) is clearly
visible. Also visible is the nonreciprocal character, manifested
in the center-symmetry breaking; albeit not strictly required,
this is a direct consequence of our design strategy relying on
a gyrotropic material constituent (see the discussion in Sect. 3).
The inset shows a magnified detail around the DBE stationary
point, which highlights the good local agreement with the blue-
print prescription.

Figure 4 shows instead a few representative (numerically-
computed) equi-frequency contours pertaining to the
synthesized multilayered metamaterial. It can be observed that,
as the angular frequency approaches the design value x0, the
equi-frequency contours tend to shrink and loose their
center-symmetric character, and eventually degenerate to the
DBE point.

As a further, independent validation of the above synthesis,
we now consider a half-space made of the synthesized
multilayered metamaterial under transverse-magnetic plane-
wave illumination (at the design angular frequency),
normally-impinging along the positive z-direction from a
vacuum half-space. Figure 5 shows a finite-element -computed
(see Appendix for details) magnetic field map, over the multi-
layer unit-cell, which exhibits the typical physical ‘‘footprints’’
associated with the DBE regime [17–21]. As it can be
observed, the field is transmitted (with small reflection) in
the metamaterial half-space, where it gets converted into an
extended mode with growing amplitude. At a distance of about
~5k0 from the vacuum-metamaterial interface, the amplitude
reaches a maximum value that is over a factor 1000 larger than
the incident one, and then it starts decreasing.

Figure 6 shows instead the magnetic energy density
(normalized with respect to the incident one, and averaged
across the unit cell)

�W m ¼
1

~H inð Þ
y

���
���
2

d

Z d

0

~Hy x; z0ð Þ
�� ��2dx; ð13Þ

as a function of the angular frequency, at a distance
z0 = 5.25k0 from the vacuum-metamaterial interface (where
the resonant transmitted field is maximum, cf. Figure 5).
As it can be observed, this quantity is strongly peaked at
the design angular frequency x0, reaching a value that is over
five orders of magnitude larger that the incident one, and
then rapidly decreasing to negligible values for x > x0

(i.e., in the bandgap). As evidenced in the magnified detail
displayed in the inset, this is qualitatively consistent with
the singular behavior predicted theoretically [17–21]

�W m / x� x0j j�1=2
; x � x0: ð14Þ

The above results clearly indicate that our designed multi-
layered metamaterial exhibits the typical physical footprints
that characterize a DBE-type giant slow-wave resonance.
Within this framework, a few remarks are in order. First,

though still based on a multilayered structure containing
anisotropic constituents, our proposed configuration differs
substantially from those in references [17–21]. By comparison
with these, our configuration is 2-D, as we do not rely on

Figure 3. Numerically-computed dispersion diagram (blue-solid
curve) for the synthesized multilayered metamaterial (with param-
eters as in Figure 2 caption), for kx = 0 in the vicinity of the design
angular frequency x0. The inset shows a magnified view around the
DBE stationary point, compared with the blueprint prediction (red-
dashed curve).

Figure 4. Numerically-computed equi-frequency contours for the
synthesized multilayered metamaterial (with parameters as in
Figure 2 caption), at angular frequencies x = 0.9x0, x = 0.99x0,
x = 0.995x0, x = 0.999x0 (red, green, blue, magenta curves,
respectively). At x = x0, the equi-frequency contour degenerates to
the DBE stationary point (indicated with a black-cross marker).
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modes with different polarizations. Moreover, we assume a
propagation direction that is parallel, rather than orthogonal,
to the layer interfaces. Accordingly, the underlying physical
mechanism is also different and, in our case, it essentially
exploits the strong nonlocality arising from the excitation
and coupling of SPP modes at the interfaces separating the

negative- and positive-permittivity layers. Finally, although
the main focus of this prototype study was on a simple
proof-of-concept demonstration of the phenomenology, and
we did not place special emphasis on application-oriented
aspects, we did make sure that the material parameters were
constrained within realistic bounds. In particular, the positive
relative-permittivity values considered in our synthesis range
from nearly 3 to about 7, while those of the negative-
permittivity and gyrotropic materials are consistent with
configurations already considered in the literature (see, e.g.,
[9, 36]).

5 Conclusions

In conclusion, this prototype study has shown the
possibility to engineer DBE-type giant slow-wave resonances
by harnessing the strong nonlocal effects that can occur in
multilayered metamaterials featuring positive- and negative-
permittivity constituents. Starting from ideal nonlocal
constitutive blueprints (inspired by our previously-developed
nonlocal TO extension), we have synthesized a multilayered
metamaterial that (as verified via full-wave numerical
simulations) exhibited the typical DBE physical footprints.

Our results may provide an alternative route for the
engineering of DBE effects, and provide further evidence of
the applicability and versatility of nonlocal-TO concepts.

Current and future investigations are aimed at exploring
alternative implementations, not relying on gyrotropic
(nonreciprocal) materials, and/or directly exploiting the
material dispersion effects. Also of great interest is the use
of gain materials, for loss compensation and/or possible
applications to lasing.

Figure 5. Finite-element-computed magnetic-field map, at the design angular frequency x0, over a unit cell of the synthesized multilayered
metamaterial (with parameters as in Figure 2 caption). A half-space configuration is assumed, with plane-wave excitation normally impinging
from vacuum. The false-color-scale map indicates the field magnitude normalized with respect to the incident one. The field map is
superimposed on the unit-cell (shown in trasparency).

Figure 6. Finite-element-computed normalized magnetic density
energy averaged over a unit cell [cf. Eq. (13)] of the synthesized
multilayered metamaterial (with parameters as in Figure 2), at
z = 5.25k0, as a function of the angular frequency (blue solid
curves). The inset shows a magnified detail around the design
angular frequency, and compares it with the theoretically predicted
behavior [red-dashed curve, cf. Eq. (14)].
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Appendix: Details on the synthesis and numerical simulations

The minimization of the error functional in equation (12) was carried out by means of a Python-based implementation of the
differential-evolution optimization algorithm available in the SciPy optimization library [37]. More specifically, we considered a
population size of 100 elements (with random initialization), the ‘‘best1bin’’ strategy, a dithering of the mutation constant within
the interval (0.5, 1), and a recombination constant equal to 0.6. We also found that slight improvements could be obtained by
‘‘polishing’’ the best element of the final population via the Nelder-Meald method. With reference to the specific example
presented, the constitutive parameters of layer #2 (gyrotropic medium) were fixed to values already utilized in the literature
[36]; for the remaining layers, the relative permittivities were assumed to vary with the realistic ranges 1 � e1,3 � 11 and
�10 � e4 � �0.1. For the layer thicknesses, a variation range 0 < dk � 0.3k0, k = 1, . . ., 4 was assumed. Moreover, to avoid
propagation of higher-order Bragg modes, the constraint d < k0/2 was enforced for the total unit-cell thickness; this was
implemented by adding a penalty term in the error functional (12) (equal to 100 if the constraint was not satisfied, and zero
otherwise). For the remaining two optimization parameters b0 and c, the variation ranges �2k0 � b0 � 2k0 and
�2k�2

0 � c � k�2
0 were set.

The field map (Figure 5) and magnetic energy density (Figure 6) were computed by means of the finite-element-based
commercial software package COMSOL Multiphysics [38]. More specifically, a single unit-cell was considered, extending
10k0 along the z-direction and terminated by periodic boundary conditions along x. The structure was excited by a plane wave
impinging from a 2k0-long section of vacuum. In order to simulate a semi-infinite structure, the other side was terminated by
a 60k0-long lossy section (not shown in Figure 5) with a linearly-increasing loss profile. The structure was discretized with a
maximum mesh size of k0/100 (resulting into about 6.3 million degrees of freedom), and the MUMPS direct solver (with default
parameters) was utilized.
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